
CHAPTER 11

Multilevel structures

As we illustrate in detail in subsequent chapters, multilevel models are extensions
of regression in which data are structured in groups and coefficients can vary by
group. In this chapter, we illustrate basic multilevel models and present several
examples of data that are collected and summarized at different levels. We start with
simple grouped data—persons within cities—where some information is available
on persons and some information is at the city level. We then consider examples of
repeated measurements, time-series cross sections, and non-nested structures. The
chapter concludes with an outline of the costs and benefits of multilevel modeling
compared to classical regression.

11.1 Varying-intercept and varying-slope models

With grouped data, a regression that includes indicators for groups is called a
varying-intercept model because it can be interpreted as a model with a different
intercept within each group. Figure 11.1a illustrates with a model with one contin-
uous predictor x and indicators for J = 5 groups. The model can be written as a
regression with 6 predictors or, equivalently, as a regression with two predictors (x
and the constant term), with the intercept varying by group:

varying-intercept model: yi = αj[i] + βxi + ϵi.

Another option, shown in Figure 11.1b, is to let the slope vary with constant inter-
cept:

varying-slope model: yi = α + βj[i]xi + ϵi.

Finally, Figure 11.1c shows a model in which both the intercept and the slope vary
by group:

varying-intercept, varying-slope model: yi = αj[i] + βj[i]xi + ϵi.

The varying slopes are interactions between the continuous predictor x and the
group indicators.

As we discuss shortly, it can be challenging to estimate all these αj ’s and βj ’s,
especially when inputs are available at the group level. The first step of multilevel
modeling is to set up a regression with varying coefficients; the second step is to
set up a regression model for the coefficients themselves.

11.2 Clustered data: child support enforcement in cities

With multilevel modeling we need to go beyond the classical setup of a data vector
y and a matrix of predictors X (as shown in Figure 3.6 on page 38). Each level of
the model can have its own matrix of predictors.

We illustrate multilevel data structures with an observational study of the effect
of city-level policies on enforcing child support payments from unmarried fathers.
The treatment is at the group (city) level, but the outcome is measured on individual
families.
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Varying intercepts Varying slopes Varying intercepts and slopes

Figure 11.1 Linear regression models with (a) varying intercepts (y = αj +βx), (b) varying
slopes (y = α + βjx), and (c) both (y = αj + βjx). The varying intercepts correspond to
group indicators as regression predictors, and the varying slopes represent interactions
between x and the group indicators.

dad mom informal city city enforce benefit city indicators
ID age race support ID name intensity level 1 2 · · · 20

1 19 hisp 1 1 Oakland 0.52 1.01 1 0 · · · 0
2 27 black 0 1 Oakland 0.52 1.01 1 0 · · · 0
3 26 black 1 1 Oakland 0.52 1.01 1 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

248 19 white 1 3 Baltimore 0.05 1.10 0 0 · · · 0
249 26 black 1 3 Baltimore 0.05 1.10 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
1366 21 black 1 20 Norfolk −0.11 1.08 0 0 · · · 1
1367 28 hisp 0 20 Norfolk −0.11 1.08 0 0 · · · 1

Figure 11.2 Some of the data from the child support study, structured as a single matrix
with one row for each person. These indicators would be used in classical regression to
allow for variation among cities. In a multilevel model they are not necessary, as we code
cities using their index variable (“city ID”) instead. We prefer separating the data into
individual-level and city-level datasets, as in Figure 11.3.

Studying the effectiveness of child support enforcement

Cities and states in the United States have tried a variety of strategies to encourage
or force fathers to give support payments for children with parents who live apart.
In order to study the effectiveness of these policies for a particular subset of high-
risk children, an analysis was done using a sample of 1367 noncohabiting parents
from the Fragile Families study, a survey of unmarried mothers of newborns in
20 cities. The survey was conducted by sampling from hospitals which themselves
were sampled from the chosen cities, but here we ignore the complexities of the
data collection and consider the mothers to have been sampled at random (from
their demographic category) in each city.

To estimate the effect of child support enforcement policies, the key “treatment”
predictor is a measure of enforcement policies, which is available at the city level.
The researchers estimated the probability that the mother received informal sup-
port, given the city-level enforcement measure and other city- and individual-level
predictors.
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dad mom informal city

ID age race support ID

1 19 hisp 1 1
2 27 black 0 1
3 26 black 1 1
...

...
...

...
...

248 19 white 1 3
249 26 black 1 3

...
...

...
...

...
1366 21 black 1 20
1367 28 hisp 0 20

city city enforce- benefit
ID name ment level

1 Oakland 0.52 1.01
2 Austin 0.00 0.75
3 Baltimore −0.05 1.10
...

...
...

...
20 Norfolk −0.11 1.08

Figure 11.3 Data from the child support study, structured as two matrices, one for persons
and one for cities. The inputs at the different levels are now clear. Compare to Figure 11.2.

A data matrix for each level of the model

Figure 11.2 shows the data for the analysis as it might be stored in a computer
package, with information on each of the 1367 mothers surveyed. To make use
of the multilevel structure of the data, however, we need to construct two data
matrices, one for each level of the model, as Figure 11.3 illustrates. At the left is
the person-level data matrix, with one row for each survey respondent, and their
cities are indicated by an index variable; at the right is the city data matrix, giving
the name and other information available for each city.

At a practical level, the two-matrix format of Figure 11.3 has the advantage
that it contains each piece of information exactly once. In contrast, the single large
matrix in Figure 11.2 has each city’s data repeated several times. Computer memory
is cheap so this would not seem to be a problem; however, if city-level information
needs to be added or changed, the single-matrix format invites errors.

Conceptually, the two-matrix, or multilevel, data structure has the advantage of
clearly showing which information is available on individuals and which on cities. It
also gives more flexibility in fitting models, allowing us to move beyond the classical
regression framework.

Individual- and group-level models

We briefly outline several possible ways of analyzing these data, as a motivation
and lead-in to multilevel modeling.
Individual-level regression. In the most basic analysis, informal support (as re-
ported by mothers in the survey) is the binary outcome, and there are several
individual- and city-level predictors. Enforcement is considered as the treatment,
and a logistic regression is used, also controlling for other inputs. This is the starting
point of the observational study.

Using classical regression notation, the model is Pr(yi =1) = logit−1(Xiβ), where
X includes the constant term, the treatment (enforcement intensity), and the other
predictors (father’s age and indicators for mother’s race at the individual level;
and benefit level at the city level). X is thus constructed from the data matrix of
Figure 11.2. This individual-level regression has the problem that it ignores city-
level variation beyond that explained by enforcement intensity and benefit level,
which are the city-level predictors in the model.
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city city enforce- benefit # in avg. prop. proportion with
ID name ment level sample age black informal support

1 Oakland 0.52 1.01 78 25.9 0.67 0.55
2 Austin 0.00 0.75 91 25.8 0.42 0.54
3 Baltimore −0.05 1.10 101 27.0 0.86 0.67
...

...
...

...
...

...
...

...
20 Norfolk −0.11 1.08 31 27.4 0.84 0.65

Figure 11.4 City-level data from child support study (as in the right panel of Figure 11.3),
also including sample sizes and sample averages from the individual responses.

Group-level regression on city averages. Another approach is to perform a city-
level analysis, with individual-level predictors included using their group-level av-
erages. Figure 11.4 illustrates: here, the outcome, yj , would be the average total
support among the respondents in city j, the enforcement indicator would be the
treatment, and the other variables would also be included as predictors. Such a
regression—in this case, with 20 data points—has the advantage that its errors are
automatically at the city level. However, by aggregating, it removes the ability of
individual predictors to predict individual outcomes. For example, it is possible that
older fathers give more informal support—but this would not necessarily translate
into average father’s age being predictive of more informal support at the city level.

Individual-level regression with city indicators, followed by group-level regression of
the estimated city effects. A slightly more elaborate analysis proceeds in two steps,
first fitting a logistic regression to the individual data y given individual predictors
(in this example, father’s age and indicators for mother’s race) along with indicators
for the 20 cities. This first-stage regression then has 22 predictors. (The constant
term is not included since we wish to include indicators for all the cities; see the
discussion at the end of Section 4.5.)

The next step in this two-step analysis is to perform a linear regression at the city
level, considering the estimated coefficients of the city indicators (in the individual
model that was just fit) as the “data” yj . This city-level regression has 20 data points
and uses, as predictors, the city-level data (in this case, enforcement intensity and
benefit level). Each of the predictors in the model is thus included in one of the two
regressions.

The two-step analysis is reasonable in this example but can run into problems
when sample sizes are small in particular groups, or when there are interactions be-
tween individual- and group-level predictors. Multilevel modeling is a more general
approach that can include predictors at both levels at once.

Multilevel models

The multilevel model looks something like the two-step model we have described,
except that both steps are fitted at once. In this example, a simple multilevel model
would have two components: a logistic regression with 1369 data points predicting
the binary outcome given individual-level predictors and with an intercept that can
vary by city, and a linear regression with 20 data points predicting the city intercepts
from city-level predictors. In the multilevel framework, the key link between the
individual and city levels is the city indicator—the “city ID” variable in Figure
11.3, which takes on values between 1 and 20.
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For this example, we would have a logistic regression at the data level:

Pr(yi =1) = logit−1(Xiβ + αj[i]), for i = 1, . . . , n, (11.1)

where X is the matrix of individual-level predictors and j[i] indexes the city where
person i resides. The second part of the model—what makes it “multilevel”—is the
regression of the city coefficients:

αj ∼ N(Ujγ, σ2
α), for j = 1, . . . , 20, (11.2)

where U is the matrix of city-level predictors, γ is the vector of coefficients for the
city-level regression, and σα is the standard deviation of the unexplained group-level
errors.

The model for the α’s in (11.2) allows us to include all 20 of them in model (11.1)
without having to worry about collinearity. The key is the group-level variation
parameter σα, which is estimated from the data (along with α, β, and a) in the
fitting of the model. We return to this point in the next chapter.

Directions for the observational study

The “treatment” variable in this example is not randomly applied; hence it is quite
possible that cities that differ in enforcement intensities could differ in other impor-
tant ways in the political, economic, or cultural dimensions. Suppose the goal were
to estimate the effects of potential interventions (such as increased enforcement),
rather than simply performing a comparative analysis. Then it would make sense
to set this up as an observational study, gather relevant pre-treatment information
to capture variation among the cities, and perhaps use a matching approach to
estimate effects. In addition, good pre-treatment measures on individuals should
improve predictive power, thus allowing treatment effects to be estimated more
accurately. The researchers studying these child support data are also looking at
other outcomes, including measures of the amity between the parents as well as
financial and other support.

Along with the special concerns of causal inference, the usual recommendations of
regression analysis apply. For example, it might make sense to consider interactions
in the model (to see if enforcement is more effective for older fathers, for example).

11.3 Repeated measurements, time-series cross sections, and other
non-nested structures

Repeated measurements

Another kind of multilevel data structure involves repeated measurements on per-
sons (or other units)—thus, measurements are clustered within persons, and pre-
dictors can be available at the measurement or person level. We illustrate with a
model fitted to a longitudinal dataset of about 2000 Australian adolescents whose
smoking patterns were recorded every six months (via questionnaire) for a period of
three years. Interest lay in the extent to which smoking behavior can be predicted
based on parental smoking and other background variables, and the extent to which
boys and girls pick up the habit of smoking during their teenage years. Figure 11.5
illustrates the overall rate of smoking among survey participants.

A multilevel logistic regression was fit, in which the probability of smoking de-
pends on sex, parental smoking, the wave of the study, and an individual parameter



242 MULTILEVEL STRUCTURES

Figure 11.5 Prevalence of regular (daily) smoking among participants responding at each
wave in the study of Australian adolescents (who were on average 15 years old at wave 1).

person parents smoke? wave 1 wave 2 · · ·

ID sex mom dad age smokes? age smokes?

1 f Y Y 15:0 N 15:6 N · · ·

2 f N N 14:7 N 15:1 N · · ·

3 m Y N 15:1 N 15:7 Y · · ·

4 f N N 15:3 N 15:9 N · · ·

...
...

...
...

...
...

...
...

. . .

Figure 11.6 Data from the smoking study as they might be stored in a single computer
file and read into R as a matrix, data. (Ages are in years:months.) These data have a
multilevel structure, with observations nested within persons.

for the person. For person j at wave t, the modeled probability of smoking is

Pr(yjt = 1) = logit−1(β0 + β1psmokej + β2femalej +
+β3(1 − femalej) · t + β4femalej · t + αj), (11.3)

where psmoke is the number of the person’s parents who smoke and female is an
indicator for females, so that β3 and β4 represent the time trends for boys and girls,
respectively.1

Figures 11.6 and 11.7 show two ways of storing the smoking data, either of which
would be acceptable for a multilevel analysis. Figure 11.6 shows a single data matrix,
with one row for each person in the study. We could then pull out the smoking
outcome y = (yjt) in R, as follows:

R code y <- data[,seq(6,16,2)]

female <- ifelse (data[,2]=="f", 1, 0)
mom.smoke <- ifelse (data[,3]=="Y", 1, 0)

dad.smoke <- ifelse (data[,4]=="Y", 1, 0)
psmoke <- mom.smoke + dad.smoke

and from there fit the model (11.3).
Figure 11.7 shows an alternative approach using two data matrices, one with a

1 Alternatively, we could include a main effect for time and an interaction between time and sex,
Pr(yjt = 1) = logit−1(β0 + β1 · psmokej + β2 · femalej + β3 · t + β4 · femalej · t + αj), so that
the time trends for boys and girls are β3 and β3 + β4, respectively. This parameterization is
appropriate to the extent that the comparison between the sexes is of interest; in this case we
used (11.3) so that we could easily interpret β3 and β4 symmetrically.



REPEATED MEASUREMENTS AND NON-NESTED STRUCTURES 243
person

age smokes? ID wave

15:0 N 1 1
14.7 N 2 1
15:1 N 3 1
15:3 N 4 1

...
...

...
...

15:6 N 1 2
15:1 N 2 2
15:7 Y 3 2
15:9 N 4 2

...
...

...
...

person parents smoke?
ID sex mom dad

1 f Y Y
2 f N N
3 m Y N
4 f N N
...

...
...

...

Figure 11.7 Data from the smoking study, with observational data written as a single long
matrix, obs.data, with person indicators, followed by a shorter matrix, person.data, of
person-level information. Compare to Figure 11.6.

row for each observation and one with a row for each person. To model these data,
one could use R code such as

R codey <- obs.data[,2]

person <- obs.data[,3]
wave <- obs.data[,4]

female <- ifelse (person.data[,2]=="f", 1, 0)
mom.smoke <- ifelse (person.data[,3]=="Y", 1, 0)
dad.smoke <- ifelse (person.data[,4]=="Y", 1, 0)

psmoke <- mom.smoke + dad.smoke

and then parameterize the model using the index i to represent individual observa-
tions, with j[i] and t[i] indicating the person and wave associated with observation
i:

Pr(yi =1) = logit−1(β0 + β1psmokej[i] + β2femalej[i] +
+ β3(1 − femalej[i]) · t[i] + β4femalej[i] · t[i] + αj[i]). (11.4)

Models (11.3) and (11.4) are equivalent, and both can be fit in Bugs (as we
describe in Part 2B). Choosing between them is a matter of convenience. For data
in a simple two-way structure (each adolescent is measured at six regular times), it
can make sense to work with the double-indexed outcome variable, (yjt). For a less
rectangular data structure (for example, different adolescents measured at irregular
intervals) it can be easier to string together a long data vector (yi), with person
and time recorded for each measurement, and with a separate matrix of person-level
information (as in Figure 11.7).

Time-series cross-sectional data

In settings where overall time trends are important, repeated measurement data are
sometimes called time-series cross-sectional. For example, Section 6.3 introduced a
study of the proportion of death penalty verdicts that were overturned, in each of
34 states in the 23 years, 1973–1995. The data come at the state × year levels but
we are also interested in studying variation among states and over time.

Time-series cross-sectional data are typically (although not necessarily) “rectan-
gular” in structure, with observations at regular time intervals. In contrast, gen-
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eral repeated measurements could easily have irregular patterns (for example, in
the smoking study, some children could be measured only once, others could be
measured monthly and others yearly). In addition, time-series cross-sectional data
commonly have overall time patterns, for example, the steady expansion of the
death penalty from the 1970s through the early 1990s. In this context one must
consider the state-year data as clustered within states and also within years, with
the potential for predictors at all three levels. We discuss such non-nested models
in Section 13.5.

Other non-nested structures

Non-nested data also arise when individuals are characterized by overlapping cate-
gories of attributes. For example, consider a study of earnings given occupation and
state of residence. A survey could include, say, 1500 persons in 40 job categories
in 50 states, and a regression model could predict log earnings given individual
demographic predictors X , 40 indicators for job categories, and 50 state indicators.
We can write the model generalizing the notation of (11.1)–(11.2):

yi = Xiβ + αj[i] + γk[i] + ϵi, for i = 1, . . . , n, (11.5)
where j[i] and k[i] represent the job category and state, respectively, for person i.
The model becomes multilevel with regressions for the job and state coefficients.
For example,

αj ∼ N(Uja, σ2
α), for j = 1, . . . , 40, (11.6)

where U is a matrix of occupation-level predictors (for example, a measure of social
status and an indicator for whether it is supervisory), a is a vector of coefficients
for the job model, and σα is the standard deviation of the model errors at the level
of job category. Similarly, for the state coefficients:

γk ∼ N(Vkg, σ2
γ) for k = 1, . . . , 50. (11.7)

The model defined by regressions (11.5)–(11.7) is non-nested because neither the
job categories j[i] nor the states k[i] are subsets of the other.

As this example illustrates, regression notation can become awkward with mul-
tilevel models because of the need for new symbols (U , V , a, g, and so forth) to
denote data matrices, coefficients, and errors at each level.

11.4 Indicator variables and fixed or random effects

Classical regression: including a baseline and J − 1 indicator variables

As discussed at the end of Section 4.5, when including an input variable with
J categories into a classical regression, standard practice is to choose one of the
categories as a baseline and include indicators for the other J − 1 categories. For
example, if controlling for the J = 20 cities in the child support study in Figure 11.2
on page 238, one could set city 1 (Oakland) as the baseline and include indicators
for the other 19. The coefficient for each city then represents its comparison to
Oakland.

Multilevel regression: including all J indicators

In a multilevel model it is unnecessary to do this arbitrary step of picking one of
the levels as a baseline. For example, in the child support study, one would include
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indicators for all 20 cities as in model (11.1). In a classical regression these could
not all be included because they would be collinear with the constant term, but in
a multilevel model this is not a problem because they are themselves modeled by a
group-level distribution (which itself can be a regression, as in (11.2)). We discuss
on page 393 how the added information removes the collinearity that is present in
the simple least squares estimate.

Fixed and random effects

The varying coefficients (αj ’s or βj ’s) in a multilevel model are sometimes called
random effects, a term that refers to the randomness in the probability model for
the group-level coefficients (as, for example, in (11.2) on page 241).

The term fixed effects is used in contrast to random effects—but not in a con-
sistent way! Fixed effects are usually defined as varying coefficients that are not
themselves modeled. For example, a classical regression including J − 1 = 19 city
indicators as regression predictors is sometimes called a “fixed-effects model” or a
model with “fixed effects for cities.” Confusingly, however, “fixed-effects models”
sometimes refer to regressions in which coefficients do not vary by group (so that
they are fixed, not random).2

A question that commonly arises is when to use fixed effects (in the sense of vary-
ing coefficients that are unmodeled) and when to use random effects. The statistical
literature is full of confusing and contradictory advice. Some say that fixed effects
are appropriate if group-level coefficients are of interest, and random effects are
appropriate if interest lies in the underlying population. Others recommend fixed

2 Here we outline five definitions that we have seen of fixed and random effects:

1. Fixed effects are constant across individuals, and random effects vary. For example, in a growth
study, a model with random intercepts αi and fixed slope β corresponds to parallel lines for
different individuals i, or the model yit = αi + βt. Kreft and De Leeuw (1998, p. 12) thus
distinguish between fixed and random coefficients.

2. Effects are fixed if they are interesting in themselves or random if there is interest in the un-
derlying population. Searle, Casella, and McCulloch (1992, section 1.4) explore this distinction
in depth.

3. “When a sample exhausts the population, the corresponding variable is fixed; when the sample
is a small (i.e., negligible) part of the population the corresponding variable is random” (Green
and Tukey, 1960).

4. “If an effect is assumed to be a realized value of a random variable, it is called a random effect”
(LaMotte, 1983).

5. Fixed effects are estimated using least squares (or, more generally, maximum likelihood) and
random effects are estimated with shrinkage (“linear unbiased prediction” in the terminology
of Robinson, 1991). This definition is standard in the multilevel modeling literature (see, for
example, Snijders and Bosker, 1999, section 4.2) and in econometrics.

In a multilevel model, this definition implies that fixed effects βj are estimated conditional on a
group-level variance σβ = ∞ and random effects βj are estimated conditional on σβ estimated
from data.

Of these definitions, the first clearly stands apart, but the other four definitions differ also.
Under the second definition, an effect can change from fixed to random with a change in the
goals of inference, even if the data and design are unchanged. The third definition differs from
the others in defining a finite population (while leaving open the question of what to do with
a large but not exhaustive sample), while the fourth definition makes no reference to an actual
(rather than mathematical) population at all. The second definition allows fixed effects to come
from a distribution, as long as that distribution is not of interest, whereas the fourth and fifth
do not use any distribution for inference about fixed effects. The fifth definition has the virtue
of mathematical precision but leaves unclear when a given set of effects should be considered
fixed or random. In summary, it is easily possible for a factor to be “fixed” according to some
definitions above and “random” for others. Because of these conflicting definitions, it is no
surprise that “clear answers to the question ‘fixed or random?’ are not necessarily the norm”
(Searle, Casella, and McCulloch, 1992, p. 15).
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effects when the groups in the data represent all possible groups, and random effects
when the population includes groups not in the data. These two recommendations
(and others) can be unhelpful. For example, in the child support example, we are
interested in these particular cities and also the country as a whole. The cities are
only a sample of cities in the United States—but if we were suddenly given data
from all the other cities, we would not want then to change our model.

Our advice (elaborated upon in the rest of this book) is to always use multilevel
modeling (“random effects”). Because of the conflicting definitions and advice, we
avoid the terms “fixed” and “random” entirely, and focus on the description of
the model itself (for example, varying intercepts and constant slopes), with the
understanding that batches of coefficients (for example, α1, . . . , αJ) will themselves
be modeled.

11.5 Costs and benefits of multilevel modeling

Quick overview of classical regression

Before we go to the effort of learning multilevel modeling, it is helpful to briefly
review what can be done with classical regression:
• Prediction for continuous or discrete outcomes,
• Fitting of nonlinear relations using transformations,
• Inclusion of categorical predictors using indicator variables,
• Modeling of interactions between inputs,
• Causal inference (under appropriate conditions).

Motivations for multilevel modeling

There are various reasons why it might be worth moving to a multilevel model,
whether for purposes of causal inference, the study of variation, or prediction of
future outcomes:
• Accounting for individual- and group-level variation in estimating group-level

regression coefficients. For example, in the child support study in Section 11.2,
interest lies in a city-level predictor (child support enforcement), and in classi-
cal regression it is not possible to include city indicators along with city-level
predictors.

• Modeling variation among individual-level regression coefficients. In classical re-
gression, one can do this using indicator variables, but multilevel modeling is
convenient when we want to model the variation of these coefficients across
groups, make predictions for new groups, or account for group-level variation in
the uncertainty for individual-level coefficients.

• Estimating regression coefficients for particular groups. For example, in the next
chapter, we discuss the problem of estimating radon levels from measurements
in several counties in Minnesota. With a multilevel model, we can get reasonable
estimates even for counties with small sample sizes, which would be difficult
using classical regression.

One or more of these reasons might apply in any particular study.

Complexity of multilevel models

A potential drawback to multilevel modeling is the additional complexity of coeffi-
cients varying by group. We do not mind this complexity—in fact, we embrace it
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in its realism—however, it does create new difficulties in understanding and sum-
marizing the model, issues we explore in Part 3 of this book.

Additional modeling assumptions

As we discuss in the next few chapters, a multilevel model requires additional
assumptions beyond those of classical regression—basically, each level of the model
corresponds to its own regression with its own set of assumptions such as additivity,
linearity, independence, equal variance, and normality.

We usually don’t mind. First, it can be possible to check these assumptions.
Perhaps more important, classical regressions can typically be identified with par-
ticular special cases of multilevel models with hierarchical variance parameters set
to zero or infinity—these are the complete pooling and no pooling models discussed
in Sections 12.2 and 12.3. Our ultimate justification, which can be seen through ex-
amples, is that the assumptions pay off in practice in allowing more realistic models
and inferences.

When does multilevel modeling make a difference?

The usual alternative to multilevel modeling is classical regression—either ignor-
ing group-level variation, or with varying coefficients that are estimated classically
(and not themselves modeled)—or combinations of classical regressions such as the
individual and group-level models described on page 239.

In various limiting cases, the classical and multilevel approaches coincide. When
there is very little group-level variation, the multilevel model reduces to classical
regression with no group indicators; conversely, when group-level coefficients vary
greatly (compared to their standard errors of estimation), multilevel modeling re-
duces to classical regression with group indicators.

When the number of groups is small (less than five, say), there is typically not
enough information to accurately estimate group-level variation. As a result, multi-
level models in this setting typically gain little beyond classical varying-coefficient
models.

These limits give us a sense of where we can gain the most from multilevel
modeling—where it is worth the effort of expanding a classical regression in this
way. However, there is little risk from applying a multilevel model, assuming we are
willing to put in the effort to set up the model and interpret the resulting inferences.

11.6 Bibliographic note

Several introductory books on multilevel models have been written in the past
decade in conjunction with specialized computer programs (see Section 1.5), in-
cluding Raudenbush and Bryk (2002), Goldstein (1995), and Snijders and Bosker
(1999). Kreft and De Leeuw (1998) provide an accessible introduction and a good
place to start (although we do not agree with all of their recommendations). These
books have a social science focus, perhaps because it is harder to justify the use
of linear models in laboratory sciences where it is easier to isolate the effects of
individual factors and so the functional form of responses is better understood.
Giltinan and Davidian (1995) and Verbeke and Molenberghs (2000) are books on
nonlinear multilevel models focusing on biostatistical applications.

Another approach to regression with multilevel data structures is to use classical
estimates and then correct the standard errors to deal with the dependence in the
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data. We briefly discuss the connection between multilevel models and correlated-
error models in Section 12.5 but do not consider these other inferential methods,
which include generalized estimating equations (see Carlin et al., 2001, for a com-
parison to multilevel models) and panel-corrected standard errors (see Beck and
Katz, 1995, 1996).

The articles in the special issue of Political Analysis devoted to multilevel mod-
eling (Kedar and Shively, 2005) illustrate several different forms of analysis of mul-
tilevel data, including two-level classical regression and multilevel modeling.

Gelman (2005) discusses difficulties with the terms “fixed” and “random” effects.
See also Kreft and De Leeuw (1998, section 1.3.3), for a discussion of the multiplicity
of definitions of fixed and random effects and coefficients, and Robinson (1998) for
a historical overview.

The child support example comes from Nepomnyaschy and Garfinkel (2005). The
teenage smoking example comes from Carlin et al. (2001), who consider several
different models, including a multilevel logistic regression.

11.7 Exercises

1. The file apt.dat in the folder rodents contains data on rodent infestation in
a sample of New York City apartments (see codebook rodents.doc). The file
dist.dat contains data on the 55 “community districts” (neighborhoods) in the
city.

(a) Write the notation for a varying-intercept multilevel logistic regression (with
community districts as the groups) for the probability of rodent infestation
using the individual-level predictors but no group-level predictors.

(b) Expand the model in (a) by including the variables in dist.dat as group-level
predictors.

2. Time-series cross-sectional data: download data with an outcome y and predic-
tors X in each of J countries for a series of K consecutive years. The outcome
should be some measure of educational achievement of children and the predic-
tors should be a per capita income measure, a measure of income inequality, and
a variable summarizing how democratic the country is. For these countries, also
create country-level predictors that are indicators for the countries’ geographic
regions.

(a) Set up the data as a wide matrix of countries × measurements (as in Figure
11.6).

(b) Set up the data as two matrices as in Figure 11.7: a long matrix with JK
rows with all the measurements, and a matrix with J rows, with information
on each country.

(c) Write a multilevel regression as in (11.5)–(11.7). Explain the meaning of all
the variables in the model.

3. The folder olympics has seven judges’ ratings of seven figure skaters (on two cri-
teria: “technical merit” and “artistic impression”) from the 1932 Winter Olympics.

(a) Construct a 7× 7× 2 array of the data (ordered by skater, judge, and judging
criterion).

(b) Reformulate the data as a 98×4 array (similar to the top table in Figure 11.7),
where the first two columns are the technical merit and artistic impression
scores, the third column is a skater ID, and the fourth column is a judge ID.
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(c) Add another column to this matrix representing an indicator variable that
equals 1 if the skater and judge are from the same country, or 0 otherwise.

4. The folder cd4 has CD4 percentages for a set of young children with HIV who
were measured several times over a period of two years. The dataset also includes
the ages of the children at each measurement.

(a) Graph the outcome (the CD4 percentage, on the square root scale) for each
child as a function of time.

(b) Each child’s data has a time course that can be summarized by a linear fit.
Estimate these lines and plot them for all the children.

(c) Set up a model for the children’s slopes and intercepts as a function of
the treatment and age at baseline. Estimate this model using the two-step
procedure–first estimate the intercept and slope separately for each child, then
fit the between-child models using the point estimates from the first step.





CHAPTER 12

Multilevel linear models: the basics

Multilevel modeling can be thought of in two equivalent ways:
• We can think of a generalization of linear regression, where intercepts, and possi-

bly slopes, are allowed to vary by group. For example, starting with a regression
model with one predictor, yi = α + βxi + ϵi, we can generalize to the varying-
intercept model, yi = αj[i] + βxi + ϵi, and the varying-intercept, varying-slope
model, yi = αj[i] + βj[i]xi + ϵi (see Figure 11.1 on page 238).

• Equivalently, we can think of multilevel modeling as a regression that includes a
categorical input variable representing group membership. From this perspective,
the group index is a factor with J levels, corresponding to J predictors in the
regression model (or 2J if they are interacted with a predictor x in a varying-
intercept, varying-slope model; or 3J if they are interacted with two predictors
X(1), X(2); and so forth).

In either case, J−1 linear predictors are added to the model (or, to put it another
way, the constant term in the regression is replaced by J separate intercept terms).
The crucial multilevel modeling step is that these J coefficients are then themselves
given a model (most simply, a common distribution for the J parameters αj or,
more generally, a regression model for the αj ’s given group-level predictors). The
group-level model is estimated simultaneously with the data-level regression of y.

This chapter introduces multilevel linear regression step by step. We begin in
Section 12.2 by characterizing multilevel modeling as a compromise between two
extremes: complete pooling, in which the group indicators are not included in the
model, and no pooling, in which separate models are fit within each group. After
laying out some notational difficulties in Section 12.5, we discuss in Section 12.6 the
different roles of the individual- and group-level regressions. Chapter 13 continues
with more complex multilevel structures.

12.1 Notation

We briefly review the notation for classical regression and then outline how it can
be generalized for multilevel models. As we illustrate in the examples, however, no
single notation is appropriate for all problems. We use the following notation for
classical regression:
• Units i = 1, . . . , n. By units, we mean the smallest items of measurement.
• Outcome measurements y = (y1, . . . , yn). These are the unit-level data being

modeled.
• Regression predictors are represented by an n × k matrix X , so that the vector

of predicted values is ŷ = Xβ, where ŷ and β are column vectors of length n
and k, respectively. We include in X the constant term (unless it is explicitly
excluded from the model), so that the first column of X is all 1’s. We usually
label the coefficients as β0, . . . , βk−1, but sometimes we index from 1 to k.

• For each individual unit i, we denote its row vector of predictors as Xi. Thus,
ŷi = Xiβ is the prediction for unit i.

251
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• For each predictor κ, we label the (κ+1)st column of X as X(κ) (assuming that
X(0) is a column of 1’s).

• Any information contained in the unit labels i should be coded in the regres-
sion inputs. For example, if i = 1, . . . , n represents the order in which persons
i enrolled in a study, we should create a time variable ti and, for example, in-
clude it in the matrix X of regression predictors. Or, more generally, consider
transformations and interactions of this new input variable.

For multilevel models, we label:
• Groups j = 1, . . . , J . This works for a single level of grouping (for example,

students within schools, or persons within states).
• We occasionally use k = 1, . . . , K for a second level of grouping (for exam-

ple, students within schools within districts; or, for a non-nested example, test
responses that can be characterized by person or by item). In any particular
example, we have to distinguish this k from the number of predictors in X . For
more complicated examples we develop idiosyncratic notation as appropriate.

• Index variables j[i] code group membership. For example, if j[35] = 4, then the
35th unit in the data (i = 35) belongs to group 4.

• Coefficients are sometimes written as a vector β, sometimes as α, β (as in Figure
11.1 on page 238), with group-level regression coefficients typically called γ.

• We make our R and Bugs code more readable by typing α, β, γ as a,b,g.
• We write the varying-intercept model with one additional predictor as yi =

αj[i]+βxi+ϵi or yi ∼ N(αj[i]+βxi, σ2
y). Similarly, the varying-intercept, varying-

slope model is yi = αj[i] + βj[i]xi + ϵi or yi ∼ N(αj[i] + βj[i]xi, σ2
y).

• With multiple predictors, we write yi = XiB + ϵi, or yi ∼ N(XiB, σ2
y). B is

a matrix of coefficients that can be modeled using a general varying-intercept,
varying-slope model (as discussed in the next chapter).

• Standard deviation is σy for data-level errors and σα, σβ , and so forth, for group-
level errors.

• Group-level predictors are represented by a matrix U with J rows, for example,
in the group-level model, αj ∼ N(Ujγ, σ2

α). When there is a single group-level
predictor, we label it as lowercase u.

12.2 Partial pooling with no predictors

As noted in Section 1.3, multilevel regression can be thought of as a method for
compromising between the two extremes of excluding a categorical predictor from
a model (complete pooling), or estimating separate models within each level of the
categorical predictor (no pooling).

Complete-pooling and no-pooling estimates of county radon levels

We illustrate with the home radon example, which we introduced in Section 1.2 and
shall use throughout this chapter. Consider the goal of estimating the distribution of
radon levels of the houses within each of the 85 counties in Minnesota.1 This seems
1 Radon levels are always positive, and it is reasonable to suppose that effects will be multiplica-

tive; hence it is appropriate to model the data on the logarithmic scale (see Section 4.4). For
some purposes, though, such as estimating total cancer risk, it makes sense to estimate averages
on the original, unlogged scale; we can obtain these inferences using simulation, as discussed
at the end of Section 12.8.



PARTIAL POOLING WITH NO PREDICTORS 253

No pooling Multilevel model

Figure 12.1 Estimates ± standard errors for the average log radon levels in Minnesota
counties plotted versus the (jittered) number of observations in the county: (a) no-pooling
analysis, (b) multilevel (partial pooling) analysis, in both cases with no house-level or
county-level predictors. The counties with fewer measurements have more variable esti-
mates and larger higher standard errors. The horizontal line in each plot represents an
estimate of the average radon level across all counties. The left plot illustrates a problem
with the no-pooling analysis: it systematically causes us to think that certain counties are
more extreme, just because they have smaller sample sizes.

simple enough. One estimate would be the average that completely pools data
across all counties. This ignores variation among counties in radon levels, however,
so perhaps a better option would be simply to use the average log radon level in
each county. Figure 12.1a plots these averages against the number of observations
in each county.

Whereas complete pooling ignores variation between counties, the no-pooling
analysis overstates it. To put it another way, the no-pooling analysis overfits the
data within each county. To see this, consider Lac Qui Parle County (circled in the
plot), which has the highest average radon level of all 85 counties in Minnesota.
This average, however, is estimated using only two data points. Lac Qui Parle may
very well be a high-radon county, but do we really believe it is that high? Maybe,
but probably not: given the variability in the data we would not have much trust
in an estimate based on only two measurements.

To put it another way, looking at all the counties together: the estimates from
the no-pooling model overstate the variation among counties and tend to make the
individual counties look more different than they actually are.

Partial-pooling estimates from a multilevel model

The multilevel estimates of these averages, displayed in Figure 12.1b, represent a
compromise between these two extremes. The goal of estimation is the average log
radon level αj among all the houses in county j, for which all we have available
are a random sample of size nj . For this simple scenario with no predictors, the
multilevel estimate for a given county j can be approximated as a weighted average
of the mean of the observations in the county (the unpooled estimate, ȳj) and the
mean over all counties (the completely pooled estimate, ȳall):

α̂multilevel
j ≈

nj

σ2
y
ȳj + 1

σ2
α
ȳall

nj

σ2
y

+ 1
σ2

α

, (12.1)
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where nj is the number of measured houses in county j, σ2
y is the within-county

variance in log radon measurements, and σ2
α is the variance among the average

log radon levels of the different counties. We could also allow the within-county
variance to vary by county (in which case σy would be replaced by σy j in the
preceding formula) but for simplicity we assume it is constant.

The weighted average (12.1) reflects the relative amount of information available
about the individual county, on one hand, and the average of all the counties, on
the other:
• Averages from counties with smaller sample sizes carry less information, and the

weighting pulls the multilevel estimates closer to the overall state average. In the
limit, if nj = 0, the multilevel estimate is simply the overall average, ȳall.

• Averages from counties with larger sample sizes carry more information, and the
corresponding multilevel estimates are close to the county averages. In the limit
as nj → ∞, the multilevel estimate is simply the county average, ȳj .

• In intermediate cases, the multilevel estimate lies between the two extremes.
To actually apply (12.1), we need estimates of the variation within and between
counties. In practice, we estimate these variance parameters together with the αj ’s,
either with an approximate program such as lmer() (see Section 12.4) or using
fully Bayesian inference, as implemented in Bugs and described in Part 2B of this
book. For now, we present inferences (as in Figure 12.1) without dwelling on the
details of estimation.

12.3 Partial pooling with predictors

The same principle of finding a compromise between the extremes of complete
pooling and no pooling applies for more general models. This section considers
partial pooling for a model with unit-level predictors. In this scenario, no pooling
might refer to fitting a separate regression model within each group. However, a less
extreme and more common option that we also sometimes refer to as “no pooling”
is a model that includes group indicators and estimates the model classically.2

As we move on to more complicated models, we present estimates graphically
but do not continue with formulas of the form (12.1). However, the general prin-
ciple remains that multilevel models compromise between pooled and unpooled
estimates, with the relative weights determined by the sample size in the group and
the variation within and between groups.

Complete-pooling and no-pooling analyses for the radon data, with predictors

Continuing with the radon data, Figure 12.2 shows the logarithm of the home radon
measurement versus floor of measurement3 for houses sampled from eight of the 85
counties in Minnesota. (We fit our model to the data from all 85 counties, including
a total of 919 measurements, but to save space we display the data and estimates
for a selection of eight counties, chosen to capture a range of the sample sizes in
the survey.)

In each graph of Figure 12.2, the dashed line shows the linear regression of log

2 This version of “no pooling” does not pool the estimates for the intercepts—the parameters
we focus on in the current discussion—but it does completely pool estimates for any slope
coefficients (they are forced to have the same value across all groups) and also assumes the
residual variance is the same within each group.

3 Measurements were taken in the lowest living area of each house, with basement coded as 0
and first floor coded as 1.
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Figure 12.2 Complete-pooling (dashed lines, y = α + βx) and no-pooling (solid lines,
y = αj +βx) regressions fit to radon data from the 85 counties in Minnesota, and displayed
for eight of the counties. The estimated slopes β differ slightly for the two models, but here
our focus is on the intercepts.

radon, given the floor of measurement, using a model that pools all counties together
(so the same line appears in all eight plots), and the solid line shows the no-pooling
regressions, obtained by including county indicators in the regression (with the
constant term removed to avoid collinearity; we also could have kept the constant
term and included indicators for all but one of the counties). We can write the
complete-pooling regression as yi = α + βxi + ϵi and the no-pooling regression as
yi = αj[i] + βxi + ϵi, where j[i] is the county corresponding to house i. The solid
lines then plot y = α̂ + β̂x from the complete-pooling model, and the dashed lines
show y = α̂j + β̂x, for j = 1, . . . , 8, from the no-pooling model.

Here is the complete-pooling regression for the radon data:

R outputlm(formula = y ~ x)
coef.est coef.se

(Intercept) 1.33 0.03
x -0.61 0.07
n = 919, k = 2

residual sd = 0.82

To fit the no-pooling model in R, we include the county index (a variable named
county that takes on values between 1 and 85) as a factor in the regression—thus,
predictors for the 85 different counties. We add “−1” to the regression formula to
remove the constant term, so that all 85 counties are included. Otherwise, R would
use county 1 as a baseline.

R outputlm(formula = y ~ x + factor(county) - 1)
coef.est coef.sd

x -0.72 0.07
factor(county)1 0.84 0.38
factor(county)2 0.87 0.10

. . .
factor(county)85 1.19 0.53
n = 919, k = 86

residual sd = 0.76

The estimated slopes β differ slightly for the two regressions. The no-pooling
model includes county indicators, which can change the estimated coefficient for
x, if the proportion of houses with basements varies among counties. This is just
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α

α

Figure 12.3 (a) Estimates ± standard errors for the county intercepts αj in the model
yi = αj[i] +βxi +errori, for the no-pooling analysis of the radon data, plotted versus num-
ber of observations from the county. The counties with fewer measurements have more
variable estimates with higher standard errors. This graph illustrates a problem with clas-
sical regression: it systematically causes us to think that certain counties are more extreme,
just because they have smaller sample sizes.
(b) Multilevel (partial pooling) estimates ± standard errors for the county intercepts αj

for the radon data, plotted versus number of observations from the county. The horizontal
line shows the complete pooling estimate. Comparing to the left plot (no pooling), which is
on the same scale, we see that the multilevel estimate is typically closer to the complete-
pooling estimate for counties with few observations, and closer to the no-pooling estimates
for counties with many observations.
These plots differ only slightly from the no-pooling and multilevel estimates without the
house-level predictor, as displayed in Figure 12.1.

a special case of the rule that adding new predictors in a regression can change
the estimated coefficient of x, if these new predictors are correlated with x. In
the particular example shown in Figure 12.2, the complete-pooling and no-pooling
estimates of β differ only slightly; in the graphs, the difference can be seen most
clearly in Stearns and Ramsey counties.

Problems with the no-pooling and complete-pooling analyses

Both the analyses shown in Figure 12.2 have problems. The complete-pooling anal-
ysis ignores any variation in average radon levels between counties. This is unde-
sirable, particularly since the goal of our analysis was to identify counties with
high-radon homes. We do not want to pool away the main subject of our study!

The no-pooling analysis has problems too, however, which we can again see in
Lac Qui Parle County. Even after controlling for the floors of measurement, this
county has the highest fitted line (that is, the highest estimate α̂j), but again we
do not have much trust in an estimate based on only two observations.

More generally, we would expect the counties with the least data to get more
extreme estimates α̂j in the no-pooling analyses. Figure 12.3a illustrates with the
estimates ± standard errors for the county intercepts αj , plotted versus the sample
size in each county j.

Multilevel analysis

The simplest multilevel model for the radon data with the floor predictor can be
written as

yi ∼ N(αj[i] + βxi, σ
2
y), for i = 1, . . . , n, (12.2)
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Figure 12.4 Multilevel (partial pooling) regression lines y = αj + βx fit to radon data
from Minnesota, displayed for eight counties. Light-colored dashed and solid lines show
the complete-pooling and no-pooling estimates, respectively, from Figure 12.3a.

which looks like the no-pooling model but with one key difference. In the no-pooling
model, the αj ’s are set to the classical least squares estimates, which correspond to
the fitted intercepts in a model run separately in each county (with the constraint
that the slope coefficient equals β in all models). Model (12.2) also looks a little
like the complete-pooling model except that, with complete pooling, the αj ’s are
given a “hard constraint”—they are all fixed at a common α.

In the multilevel model, a “soft constraint” is applied to the αj ’s: they are as-
signed a probability distribution,

αj ∼ N(µα, σ2
α), for j = 1, . . . , J, (12.3)

with their mean µα and standard deviation σα estimated from the data. The distri-
bution (12.3) has the effect of pulling the estimates of αj toward the mean level µα,
but not all the way—thus, in each county, a partial-pooling compromise between the
two estimates shown in Figure 12.2. In the limit of σα → ∞, the soft constraints
do nothing, and there is no pooling; as σα → 0, they pull the estimates all the way
to zero, yielding the complete-pooling estimate.

Figure 12.4 shows, for the radon example, the estimated line from the multi-
level model (12.2), which in each county lies between the complete-pooling and
no-pooling regression lines. There is strong pooling (solid line closer to complete-
pooling line) in counties with small sample sizes, and only weak pooling (solid line
closer to no-pooling line) in counties containing many measurements.

Going back to Figure 12.3, the right panel shows the estimates and standard
errors for the county intercepts αj from the multilevel model, plotted versus county
sample size. Comparing to the left panel, we see more pooling for the counties with
fewer observations. We also see a trend that counties with larger sample sizes have
lower radon levels, indicating that “county sample size” is correlated with some
relevant county-level predictor.

Average regression line and individual- and group-level variances

Multilevel models typically have so many parameters that it is not feasible to closely
examine all their numerical estimates. Instead we plot the estimated group-level
models (as in Figure 12.4) and varying parameters (as in Figure 12.3b) to look
for patterns and facilitate comparisons across counties. It can be helpful, however,
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to look at numerical summaries for the hyperparameters—those model parameters
without group-level subscripts.

For example, in the radon model, the hyperparameters are estimated as µ̂α =
1.46, β̂ = −0.69, σ̂y = 0.76, and σ̂α = 0.33. (We show the estimates in Section 12.4.)
That is, the estimated average regression line for all the counties is y = 1.46−0.69x,
with error standard deviations of 0.76 at the individual level and 0.33 at the county
level. For this dataset, variation within counties (after controlling for the floor of
measurement) is comparable to the average difference between measurements in
houses with and without basements.

One way to interpret the variation between counties, σα, is to consider the
variance ratio, σ2

α/σ2
y, which in this example is estimated at 0.332/0.762 = 0.19,

or about one-fifth. Thus, the standard deviation of average radon levels between
counties is the same as the standard deviation of the average of 5 measurements
within a county (that is, 0.76/

√
5 = 0.33). The relative values of individual- and

group-level variances are also sometimes expressed using the intraclass correlation,
σ2

α/(σ2
α + σ2

y), which ranges from 0 if the grouping conveys no information to 1 if
all members of a group are identical.

In our example, the group-level model tells us that the county intercepts, αj , have
an estimated mean of 1.46 and standard deviation of 0.33. (What is relevant to our
discussion here is the standard deviation, not the mean.) The amount of information
in this distribution is the same as that in 5 measurements within a county. To put it
another way, for a county with a sample size less than 5, there is more information
in the group-level model than in the county’s data; for a county with more than 5
observations, the within-county measurements are more informative (in the sense
of providing a lower-variance estimate of the county’s average radon level). As a
result, the multilevel regression line in a county is closer to the complete-pooling
estimate when sample size is less than 5, and closer to the no-pooling estimate when
sample size exceeds 5. We can see this in Figure 12.4: as sample size increases, the
multilevel estimates move closer and closer to the no-pooling lines.

Partial pooling (shrinkage) of group coefficients αj

Multilevel modeling partially pools the group-level parameters αj toward their
mean level, µα. There is more pooling when the group-level standard deviation
σα is small, and more smoothing for groups with fewer observations. Generaliz-
ing (12.1), the multilevel-modeling estimate of αj can be expressed as a weighted
average of the no-pooling estimate for its group (ȳj − βx̄j) and the mean, µα:

estimate of αj ≈
nj

σ2
y

nj

σ2
y

+ 1
σ2

α

(ȳj − βx̄j) +
1

σ2
α

nj

σ2
y

+ 1
σ2

α

µα. (12.4)

When actually fitting multilevel models, we do not actually use this formula; rather,
we fit models using lmer() or Bugs, which automatically perform the calculations,
using formulas such as (12.4) internally. Chapter 19 provides more detail on the
algorithms used to fit these models.

Classical regression as a special case

Classical regression models can be viewed as special cases of multilevel models.
The limit of σα → 0 yields the complete-pooling model, and σα → ∞ reduces to
the no-pooling model. Given multilevel data, we can estimate σα. Therefore we
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see no reason (except for convenience) to accept estimates that arbitrarily set this
parameter to one of these two extreme values.

12.4 Quickly fitting multilevel models in R

We fit most of the multilevel models in this part of the book using the lmer()
function, which fits linear and generalized linear models with varying coefficients.4
Part 2B of the book considers computation in more detail, including a discussion
of why it can be helpful to make the extra effort and program models using Bugs
(typically using a simpler lmer() fit as a starting point). The lmer() function
is currently part of the R package Matrix; see Appendix C for details. Here we
introduce lmer() in the context of simple varying-intercept models.

The lmer function

Varying-intercept model with no predictors. The varying intercept model with no
predictors (discussed in Section 12.2) can be fit and displayed using lmer() as
follows:

R codeM0 <- lmer (y ~ 1 + (1 | county))
display (M0)

This model simply includes a constant term (the predictor “1”) and allows it to
vary by county. We next move to a more interesting model including the floor of
measurement as an individual-level predictor.
Varying-intercept model with an individual-level predictor. We shall introduce mul-
tilevel fitting with model (12.2)–(12.3), the varying-intercept regression with a single
predictor. We start with the call to lmer():

R codeM1 <- lmer (y ~ x + (1 | county))

This expression starts with the no-pooling model, “y ~ x,” and then adds “(1 |
county),” which allows the intercept (the coefficient of the predictor “1,” which is
the column of ones—the constant term in the regression) to vary by county.

We can then display a quick summary of the fit:

R codedisplay (M1)

which yields

R outputlmer(formula = y ~ x + (1 | county))
coef.est coef.se

(Intercept) 1.46 0.05
x -0.69 0.07
Error terms:

Groups Name Std.Dev.
county (Intercept) 0.33
Residual 0.76

# of obs: 919, groups: county, 85
deviance = 2163.7

4 The name lmer stands for “linear mixed effects in R,” but the function actually works for
generalized linear models as well. The term “mixed effects” refers to random effects (coefficients
that vary by group) and fixed effects (coefficients that do not vary). We avoid the terms “fixed”
and “random” (see page 245) and instead refer to coefficients as “modeled” (that is, grouped)
or “unmodeled.”
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The top part of this display shows the inference about the intercept and slope
for the model, averaging over the counties. The bottom part gives the estimated
variation: σ̂α = 0.33 and σ̂y = 0.76. We also see that the model was fit to 919
houses within 85 counties. We shall ignore the deviance for now.

Estimated regression coefficients

To see the estimated model within each county. We type

R code coef (M1)

which yields

R output $county
(Intercept) x

1 1.19 -0.69

2 0.93 -0.69
3 1.48 -0.69
. . .

85 1.39 -0.69

Thus, the estimated regression line is y = 1.19−0.69x in county 1, y = 0.93+0.69x
in county 2, and so forth. The slopes are all identical because they were specified
thus in the model. (The specification (1|county) tells the model to allow only the
intercept to vary. As we shall discuss in the next chapter, we can allow the slope to
vary by specifying (1+x|county) in the regression model.)
Fixed and random effects. Alternatively, we can separately look at the estimated
model averaging over the counties—the “fixed effects”—and the county-level errors—
the “random effects.” Typing

R code fixef (M1)

yields

R output (Intercept) x
1.46 -0.69

The estimated regression line in an average county is thus y = 1.46 − 0.69x. We
can then look at the county-level errors:

R code ranef (M1)

which yields

R output (Intercept)

1 -0.27
2 -0.53

3 0.02
. . .
85 -0.08

These tell us how much the intercept is shifted up or down in particular counties.
Thus, for example, in county 1, the estimated intercept is 0.27 lower than average,
so that the regression line is (1.46 − 0.27) − 0.69x = 1.19 − 0.69x, which is what
we saw earlier from the call to coef(). For some applications, it is best to see the
estimated model within each group; for others, it is helpful to see the estimated
average model and group-level errors.
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Uncertainties in the estimated coefficients

We wrote little functions se.fixef() and se.ranef() for quickly pulling out these
standard errors from the model fitted by lmer(). In this example,

R codese.fixef (M1)

yields

R output(Intercept) x

0.05 0.07

and

R codese.ranef (M1)

yields,

R output$county
(Intercept)

1 0.25
2 0.10
3 0.26

. . .
85 0.28

As discussed in Section 12.3, the standard errors differ according to the sample size
within each county; for example, counties 1, 2, and 85 have 4, 52, and 2 houses,
respectively, in the sample. For the within-county regressions, standard errors are
only given for the intercepts, since this model has a common slope for all counties.

Summarizing and displaying the fitted model

We can access the components of the estimates and standard errors using list no-
tation in R. For example, to get a 95% confidence interval for the slope (which, in
this model, does not vary by county):

R codefixef(M1)["x"] + c(-2,2)*se.fixef(M1)["x"]

or, equivalently, since the slope is the second coefficient in the regression,

R codefixef(M1)[2] + c(-2,2)*se.fixef(M1)[2]

The term “fixed effects” is used for the regression coefficients that do not vary by
group (such as the coefficient for x in this example) or for group-level coefficients
or group averages (such as the average intercept, µα in (12.3)).
Identifying the batches of coefficients. In pulling out elements of the coefficients
from coef() or ranef(), we must first identify the grouping (county, in this case).
The need for this labeling will become clear in the next chapter in the context of
non-nested models, where there are different levels of grouping and thus different
structures of varying coefficients.

For example, here is a 95% confidence interval for the intercept in county 26:

R codecoef(M1)$county[26,1] + c(-2,2)*se.ranef(M1)$county[26]

and here is a 95% confidence interval for the error in the intercept in that county
(that is, the deviation from the average):

R codeas.matrix(ranef(M1)$county)[26] + c(-2,2)*se.ranef(M1)$county[26]

For a more elaborate example, we make Figure 12.4 using the following commands:
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R code a.hat.M1 <- coef(M1)$county[,1] # 1st column is the intercept

b.hat.M1 <- coef(M1)$county[,2] # 2nd element is the slope
x.jitter <- x + runif(n,-.05,.05) # jittered data for plotting
par (mfrow=c(2,4)) # make a 2x4 grid of plots
for (j in display8){

plot (x.jitter[county==j], y[county==j], xlim=c(-.05,1.05),
ylim=y.range, xlab="floor", ylab="log radon level", main=uniq.name[j])

## [uniq.name is a vector of county names that was created earlier]

curve (coef(lm.pooled)[1] + coef(lm.pooled)[2]*x, lty=2, col="gray10",
add=TRUE)

curve (coef(lm.unpooled)[j+1] + coef(lm.unpooled)[1]*x, col="gray10",

add=TRUE)
curve (a.hat.M1[j] + b.hat.M1[j]*x, lwd=1, col="black", add=TRUE)

}

Here, lm.pooled and lm.unpooled are the classical regressions that we have already
fit.

More complicated models

The lmer() function can also handle many of the multilevel regressions discussed
in this part of the book, including group-level predictors, varying intercepts and
slopes, nested and non-nested structures, and multilevel generalized linear models.
Approximate routines such as lmer() tend to work well when the sample size and
number of groups is moderate to large, as in the radon models. When the number of
groups is small, or the model becomes more complicated, it can be useful to switch
to Bayesian inference, using the Bugs program, to better account for uncertainty
in model fitting. We return to this point in Section 16.1.

12.5 Five ways to write the same model

We begin our treatment of multilevel models with the simplest structures—nested
models, in which we have observations i = 1, . . . , n clustered in groups j = 1, . . . , J ,
and we wish to model variation among groups. Often, predictors are available at
the individual and group levels. We shall use as a running example the home radon
analysis described above, using as predictors the house-level xi and a measure of
the logarithm of soil uranium as a county-level predictor, uj. For some versions of
the model, we include these both as individual-level predictors and label them as
Xi1 and Xi2.

There are several different ways of writing a multilevel model. Rather than in-
troducing a restrictive uniform notation, we describe these different formulations
and explain how they are connected. It is useful to be able to express a model in
different ways, partly so that we can recognize the similarities between models that
only appear to be different, and partly for computational reasons.

Allowing regression coefficients to vary across groups

Perhaps the simplest way to express a multilevel model generally is by starting with
the classical regression model fit to all the data, yi = β0 + β1Xi1 + β2Xi2 + · · ·+ ϵi,
and then generalizing to allow the coefficients β to vary across groups; thus,

yi = β0 j[i] + β1 j[i]Xi1 + β2 j[i]Xi2 + · · · + ϵi.

The “multilevel” part of the model involves assigning a multivariate distribution to
the vector of β’s within each group, as we discuss in Section 13.1.
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For now we will focus on varying-intercept models, in which the only coefficient
that varies across groups is the constant term β0 (which, to minimize subscripting,
we label α). For the radon data that include the floor and a county-level uranium
predictor, the model then becomes

yi = αj[i] + β1Xi1 + β2Xi2 + ϵi

where Xi1 is the ith element of the vector X(1) representing the first-floor indicators
and Xi2 is the ith element of the vector X(2) representing the uranium measurement
in the county containing house i. We can also write this in matrix notation as

yi = αj[i] + Xiβ + ϵi

with the understanding that X includes the first-floor indicator and the county
uranium measurement but not the constant term. This is the way that models are
built using lmer(), including all predictors at the individual level, as we discuss in
Section 12.6.

The second level of the model is simply

αj ∼ N(µα, σ2
α). (12.5)

Group-level errors. The model (12.5) can also be written as

αj = µα + ηj , with ηj ∼ N(0, σ2
α). (12.6)

The group-level errors ηj can be helpful in understanding the model; however, we
often use the more compact notation (12.5) to reduce the profusion of notation.
(We have also toyed with notation such as αj = µα + ϵα

j in which ϵ is consistently
used for regression errors—but the superscripts seem too confusing. As illustrated
in Part 2B of this book, we sometimes use such notation when programming models
in Bugs.)

Combining separate local regressions

An alternative way to write the multilevel model is as a linking of local regressions
in each group. Within each group j, a regression is performed on the local predictors
(in this case, simply the first-floor indicator, xi), with a constant term α that is
indexed by group:

within county j: yi ∼ N(αj + βxi, σ
2
y), for i = 1, . . . , nj . (12.7)

The county uranium measurement has not yet entered the model since we are imag-
ining separate regressions fit to each county—there would be no way to estimate the
coefficient for a county-level predictor from any of these within-county regressions.

Instead, the county-level uranium level, uj , is included as a predictor in the
second level of the model:

αj ∼ N(γ0 + γ1uj , σ
2
α). (12.8)

We can also write the distribution in (12.8) as N(Ujγ, σ2
α), where U has two columns:

a constant term, U(0), and the county-level uranium measurement, U(1). The errors
in this model (with mean 0 and standard deviation σα) represent variation among
counties that is not explained by the local and county-level predictors.

The multilevel model combines the J local regression models (12.7) in two ways:
first, the local regression coefficients β are the same in all J models (an assumption
we will relax in Section 13.1). Second, the different intercepts αj are connected
through the group-level model (12.8), with consequences to the coefficient estimates
that we discuss in Section 12.6.
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Group-level errors. We can write (12.8) as

αj = γ0 + γ1uj + ηj , with ηj ∼ N(0, σ2
α), (12.9)

explicitly showing the errors in the county-level regression.

Modeling the coefficients of a large regression model

The identical model can be written as a single regression, in which the local and
group-level predictors are combined into a single matrix X :

yi ∼ N(Xiβ, σ2
y), (12.10)

where, for our example, X includes vectors corresponding to:
• A constant term, X(0);

• The floor where the measurement was taken, X(1);

• The county-level uranium measure, X(2);

• J (not J−1) county indicators, X(3), . . . , X(J+2).
At the upper level of the model, the J county indicators (which in this case are
β3, . . . , βJ+2) follow a normal distribution:

βj ∼ N(0, σ2
α), for j = 3, . . . , J + 2. (12.11)

In this case, we have centered the βj distribution at 0 rather than at an estimated
µβ because any such µβ would be statistically indistinguishable from the constant
term in the regression. We return to this point shortly.

The parameters in the model (12.10)–(12.11) can be identified exactly with those
in the separate local regressions above:
• The local predictor x in model (12.7) is the same as X(1) (the floor) here.

• The local errors ϵi are the same in the two models.

• The matrix of group-level predictors U in (12.8) is just X(0) here (the constant
term) joined with X(2) (the uranium measure).

• The group-level errors η1, . . . , ηJ in (12.9) are identical to β3, . . . , βJ+2 here.

• The standard-deviation parameters σy and σα keep the same meanings in the
two models.

Moving the constant term around. The multilevel model can be written in yet
another equivalent way by moving the constant term:

yi = N(Xiβ, σ2
y), for i = 1, . . . , n

βj ∼ N(µα, σ2
α), for j = 3, . . . , J + 2. (12.12)

In this version, we have removed the constant term from X (so that it now has only
J +2 columns) and replaced it by the equivalent term µα in the group-level model.
The coefficients β3, . . . , βJ+2 for the group indicators are now centered around µα

rather than 0, and are equivalent to α1, . . . , αJ as defined earlier, for example, in
model (12.9).

Regression with multiple error terms

Another option is to re-express model (12.10), treating the group-indicator coeffi-
cients as error terms rather than regression coefficients, in what is often called a
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“mixed effects” model popular in the social sciences:

yi ∼ N(Xiβ + ηj[i], σ
2
y), for i = 1, . . . , n

ηj ∼ N(0, σ2
α), (12.13)

where j[i] represents the county that contains house i, and X now contains only
three columns:

• A constant term, X(0);

• The floor, X(1);

• The county-level uranium measure, X(2).

This is the same as model (12.10)–(12.11), simply renaming some of the βj ’s as
ηj ’s. All our tools for multilevel modeling will automatically work for models with
multiple error terms.

Large regression with correlated errors

Finally, we can express a multilevel model as a classical regression with correlated
errors:

yi = Xiβ + ϵalli , ϵall ∼ N(0, Σ), (12.14)

where X is now the matrix with three predictors (the constant term, first-floor
indicator, and county-level uranium measure) as in (12.13), but now the errors ϵalli

have an n × n covariance matrix Σ. The error ϵalli in (12.14) is equivalent to the
sum of the two errors, ηj[i] + ϵi, in (12.13). The term ηj[i], which is the same for all
units i in group j, induces correlation in ϵall.

In multilevel models, Σ is parameterized in some way, and these parameters are
estimated from the data. For the nested multilevel model we have been considering
here, the variances and covariances of the n elements of ϵall can be derived in terms
of the parameters σy and σα:

For any unit i: Σii = var(ϵalli ) = σ2
y + σ2

α

For any units i, k within the same group j: Σik = cov(ϵalli , ϵallk ) = σ2
α

For any units i, k in different groups: Σik = cov(ϵalli , ϵallk ) = 0.

It can also be helpful to express Σ in terms of standard errors and correlations:

sd(ϵi) =
√

Σii =
√

σ2
y + σ2

α

corr(ϵi, ϵk) =
Σik√
ΣiiΣkk

=

{
σ2

α

σ2
y+σ2

α
if j[i] = j[k]

0 if j[i] ̸= j[k].

We generally prefer modeling the multilevel effects explicitly rather than burying
them as correlations, but once again it is useful to see how the same model can be
written in different ways.

12.6 Group-level predictors

Adding a group-level predictor to improve inference for group coefficients αj

We continue with the radon example from Sections 12.2–12.3 to illustrate how a
multilevel model handles predictors at the group as well as the individual levels.
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Figure 12.5 Multilevel (partial pooling) regression lines y = αj + βx fit to radon data,
displayed for eight counties, including uranium as a county-level predictor. Light-colored
lines show the multilevel estimates, without uranium as a predictor, from Figure 12.4.

−
−

Figure 12.6 Estimated county coefficients αj (±1 standard error) plotted versus county-
level uranium measurement uj , along with the estimated multilevel regression line αj =
γ0 + γ1uj . The county coefficients roughly follow the line but not exactly; the deviation of
the coefficients from the line is captured in σα, the standard deviation of the errors in the
county-level regression.

We use the formulation

yi ∼ N(αj[i] + βxi, σ2
y), for i = 1, . . . , n

αj ∼ N(γ0 + γ1uj, σ2
α), for j = 1, . . . , J, (12.15)

where xi is the house-level first-floor indicator and uj is the county-level uranium
measure.

R code u.full <- u[county]

M2 <- lmer (y ~ x + u.full + (1 | county))
display (M2)

This model includes floor, uranium, and intercepts that vary by county. The lmer()
function only accepts predictors at the individual level, so we have converted uj to
ufull

i = uj[i] (with the variable county playing the role of the indexing j[i]), to pull
out the uranium level of the county where house i is located.

The display of the lmer() fit shows coefficients and standard errors, along with
estimated residual variation at the county and individual (“residual”) level:
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R outputlmer(formula = y ~ x + u.full + (1 | county))

coef.est coef.se
(Intercept) 1.47 0.04
x -0.67 0.07
u.full 0.72 0.09

Error terms:
Groups Name Std.Dev.
county (Intercept) 0.16

Residual 0.76
# of obs: 919, groups: county, 85
deviance = 2122.9

As in our earlier example on page 261, we use coef() to pull out the estimated
coefficients,

R codecoef (M2)

yielding

R output$county
(Intercept) x u.full

1 1.45 -0.67 0.72

2 1.48 -0.67 0.72
. . .
85 1.42 -0.67 0.72

Only the intercept varies, so the coefficients for x and u.full are the same for all 85
counties. (Actually, u.full is constant within counties so it cannot have a varying
coefficient here.) On page 280 we shall see a similar display for a model in which
the coefficient for x varies by county.

As before, we can also examine the estimated model averaging over the counties:

R codefixef (M2)

yielding

R output(Intercept) x u.full

1.47 -0.67 0.72

and the county-level errors:

R coderanef (M2)

yielding

R output(Intercept)

1 -0.02
2 0.01

. . .
85 -0.04

The results of fixef() and ranef() add up to the coefficients in coef(): for
county 1, 1.47 − 0.02 = 1.45, for county 2, 1.47 + 0.01 = 1.48, . . . , and for county
85, 1.47 − 0.04 = 1.42 (up to rounding error).
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Interpreting the coefficients within counties

We can add the unmodeled coefficients (the “fixed effects”) to the county-level errors
to get an intercept and slope for each county. We start with the model that averages
over all counties, yi = 1.47 − 0.67xi + 0.72uj[i] (as obtained from display(M2) or
fixef(M2).

Now consider a particular county, for example county 85. We can determine its
fitted regression line in two ways from the lmer() output, in each case using the
log uranium level in county 85, u85 = 0.36.

First, using the the last line of the display of coef(M2), the fitted model for county
85 is yi = 1.42 − 0.67xi + 0.72u85 = (1.42 + 0.72 · 0.36) − 0.67xi = 1.68 − 0.67xi,
that is, 1.68 for a house with a basement and 1.01 for a house with no basement.
Exponentiating gives estimated geometric mean predictions of 5.4 pCi/L and 2.7
pCi/L for houses in county 85 with and without basements.

Alternatively, we can construct the fitted line for county 85 by starting with the
results from fixef(M2)—that is, yi = 1.47−0.67xi+0.72uj[i], setting uj[i] = u85 =
0.36—and adding the group-level error from ranef(M2), which for county 85 is
−0.04. The resulting model is yi = 1.47−0.67xi +0.72 ·0.36−0.04 = 1.68−0.67xi,
the same as in the other calculation (up to rounding error in the last digit of the
intercept).

Figure 12.5 shows the fitted line for each of a selection of counties, and Figure
12.6 shows the county-level regression, plotting the estimated coefficients αj versus
the county-level predictor uj. These two figures represent the two levels of the
multilevel model.

The group-level predictor has increased the precision of our estimates of the
county intercepts αj : the ±1 standard-error bounds are narrower in Figure 12.6
than in Figure 12.3b, which showed αj ’s estimated without the uranium predictor
(note the different scales on the y-axes of the two plots and the different county
variables plotted on the x-axes).

The estimated individual- and county-level standard deviations in this model are
σ̂y = 0.76 and σ̂α = 0.16. In comparison, these residual standard deviations were
0.76 and 0.33 without the uranium predictor. This predictor has left the within-
county variation unchanged—which makes sense, since it is a county-level predictor
which has no hope of explaining variation within any county—but has drastically
reduced the unexplained variation between counties. In fact, the variance ratio is
now only σ2

α/σ2
y = 0.162/0.762 = 0.044, so that the county-level model is as good

as 1/0.044 = 23 observations within any county. The multilevel estimates under
this new model will be close to the complete-pooling estimates (with county-level
uranium included as a predictor) for many of the smaller counties in the dataset
because a county would have to have more than 23 observations to be pulled closer
to the no-pooling estimate than the complete-pooling estimate.

Interpreting the coefficient of the group-level predictor

The line in Figure 12.6 shows the prediction of average log radon in a county
(for homes with basements—that is, xi = 0—since these are the intercepts αj),
as a function of the log uranium level in the county. This estimated group-level
regression line has an estimated slope of about 0.7. Coefficients between 0 and 1
are typical in a log-log regression: in this case, each increase of 1% in uranium level
corresponds to a 0.7% predicted increase in radon.

It makes sense that counties higher in uranium have higher radon levels, and it
also makes sense that the slope is less than 1. Radon is affected by factors other
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than soil uranium, and the “uranium” variable in the dataset is itself an imprecise
measure of actual soil uranium in the county, and so we would expect a 1% increase
in the uranium variable to match to something less than a 1% increase in radon.
Compared to classical regression, the estimation of this coefficient is trickier (since
the αj ’s—the “data” for the county-level regression—are not themselves observed)
but the principles of interpretation do not change.

A multilevel model can include county indicators along with a county-level
predictor

Users of multilevel models are often confused by the idea of including county in-
dicators along with a county-level predictor. Is this possible? With 85 counties in
the dataset, how can a regression fit 85 coefficients for counties, plus a coefficient
for county-level uranium? This would seem to induce perfect collinearity into the
regression or, to put it more bluntly, to attempt to learn more than the data can
tell us. Is it really possible to estimate 86 coefficients from 85 data points?

The short answer is that we really have more than 85 data points. There are
hundreds of houses with which to estimate the 85 county-level intercepts, and 85
counties with which to estimate the coefficient of county-level uranium. In a classical
regression, however, the 85 county indicators and the county-level predictor would
indeed be collinear. This problem is avoided in a multilevel model because of the
partial pooling of the αj ’s toward the group-level linear model. This is illustrated in
Figure 12.6, which shows the estimates of all these 86 parameters—the 85 separate
points and the slope of the line. In this model that includes a group-level predictor,
the estimated intercepts are pulled toward this group-level regression line (rather
than toward a constant, as in Figure 12.3b). The county-level uranium predictor
uj thus helps us estimate the county intercepts αj but without overwhelming the
information in individual counties.

Partial pooling of group coefficients αj in the presence of group-level predictors

Equation (12.4) on page 258 gives the formula for partial pooling in the simple
model with no group-level predictors. Once we add a group-level regression, αj ∼
N(Ujγ, σ2

α), the parameters αj are shrunk toward their regression estimates α̂j =
Ujγ. Equivalently, we can say that the group-level errors ηj (in the model αj =
Ujγ + ηj) are shrunk toward 0. As always, there is more pooling when the group-
level standard deviation σα is small, and more smoothing for groups with fewer
observations. The multilevel estimate of αj is a weighted average of the no-pooling
estimate for its group (ȳj − Xjβ) and the regression prediction α̂j :

estimate of αj ≈
nj

σ2
y

nj

σ2
y

+ 1
σ2

α

· (estimate from group j) +

+
1

σ2
α

nj

σ2
y

+ 1
σ2

α

· (estimate from regression). (12.16)

Equivalently, the group-level errors ηj are partially pooled toward zero:

estimate of ηj ≈
nj

σ2
y

nj

σ2
y

+ 1
σ2

α

(ȳj − Xjβ − Ujγ) +
1

σ2
α

nj

σ2
y

+ 1
σ2

α

· 0.
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12.7 Model building and statistical significance

From classical to multilevel regression

When confronted with a multilevel data structure, such as the radon measurements
considered here or the examples in the previous chapter, we typically start by fitting
some simple classical regressions and then work our way up to a full multilevel
model. The four natural starting points are:

• Complete-pooling model: a single classical regression completely ignoring the
group information—that is, a single model fit to all the data, perhaps including
group-level predictors but with no coefficients for group indicators.

• No-pooling model: a single classical regression that includes group indicators
(but no group-level predictors) but with no model for the group coefficients.

• Separate models: a separate classical regression in each group. This approach is
not always possible if there are groups with small sample sizes. (For example,
in Figure 12.4 on page 257, Aitkin County has three measurements in homes
with basements and one in a home with no basement. If the sample from Aitkin
County had happened to contain only houses with basements, then it would be
impossible to estimate the slope β from this county alone.)

• Two-step analysis: starting with either the no-pooling or separate models, then
fitting a classical group-level regression using, as “data,” the estimated coeffi-
cients for each group.

Each of these simpler models can be informative in its own right, and they also set
us up for understanding the partial pooling in a multilevel model, as in Figure 12.4.

For large datasets, fitting a model separately in each group can be computa-
tionally efficient as well. One might imagine an iterative procedure that starts by
fitting separate models, continues with the two-step analysis, and then returns to
fitting separate models, but using the resulting group-level regression to guide the
estimates of the varying coefficients. Such a procedure, if formalized appropriately,
is in fact the usual algorithm used to fit multilevel models, as we discuss in Chapter
17.

When is multilevel modeling most effective?

Multilevel model is most important when it is close to complete pooling, at least
for some of the groups (as for Lac Qui Parle County in Figure 12.4 on page 257).
In this setting we can allow estimates to vary by group while still estimating them
precisely. As can be seen from formula (12.16), estimates are more pooled when the
group-level standard deviation σα is small, that is, when the groups are similar to
each other. In contrast, when σα is large, so that groups vary greatly, multilevel
modeling is not much better than simple no-pooling estimation.

At this point, it might seem that we are contradicting ourselves. Earlier we mo-
tivated multilevel modeling as a compromise between no pooling and complete
pooling, but now we are saying that multilevel modeling is effective when it is close
to complete pooling, and ineffective when it is close to no pooling. If this is so, why
not just always use the complete-pooling estimate?

We answer this question in two ways. First, when the multilevel estimate is close
to complete pooling, it still allows variation between groups, which can be impor-
tant, in fact can be one of the goals of the study. Second, as in the radon example,
the multilevel estimate can be close to complete pooling for groups with small sam-
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ple size and close to no pooling for groups with large sample size, automatically
performing well for both sorts of group.

Using group-level predictors to make partial pooling more effective

In addition to being themselves of interest, group-level predictors play a special
role in multilevel modeling by reducing the unexplained group-level variation and
thus reducing the group-level standard deviation σα. This in turn increases the
amount of pooling done by the multilevel estimate (see formula (12.16)), giving more
precise estimates of the αj ’s, especially for groups for which the sample size nj is
small. Following the template of classical regression, multilevel modeling typically
proceeds by adding predictors at the individual and group levels and reducing
the unexplained variance at each level. (However, as discussed in Section 21.7,
adding a group-level predictor can actually increase the unexplained variance in
some situations.)

Statistical significance

It is not appropriate to use statistical significance as a criterion for including par-
ticular group indicators in a multilevel model. For example, consider the simple
varying-intercept radon model with no group-level predictor, in which the average
intercept µα is estimated at 1.46, and the within-group intercepts αj are estimated
at 1.46− 0.27± 0.25 for county 1, 1.46− 0.53± 0.10 for county 2, 1.46+0.02± 0.28
for county 3, and so forth (see page 261).

County 1 is thus approximately 1 standard error away from the average intercept
of 1.46, county 2 is more than 4 standard errors away, . . . and county 85 is less than
1 standard error away. Of these three counties, only county 2 would be considered
“statistically significantly” different from the average.

However, we should include all 85 counties in the model, and nothing is lost by
doing so. The purpose of the multilevel model is not to see whether the radon levels
in county 1 are statistically significantly different from those in county 2, or from
the Minnesota average. Rather, we seek the best possible estimate in each county,
with appropriate accounting for uncertainty. Rather than make some significance
threshold, we allow all the intercepts to vary and recognize that we may not have
much precision in many of the individual groups. We illustrate this point in another
example in Section 21.8.

The same principle holds for the models discussed in the following chapters, which
include varying slopes, non-nested levels, discrete data, and other complexities.
Once we have included a source of variation, we do not use statistical significance
to pick and choose indicators to include or exclude from the model.

In practice, our biggest constraints—the main reasons we do not use extremely
elaborate models in which all coefficients can vary with respect to all grouping
factors—are fitting and understanding complex models. The lmer() function works
well when it works, but it can break down for models with many grouping factors.
Bugs is more general (see Part 2B of this book) but can be slow with large datasets
or complex models. In the meantime we need to start simple and build up gradually,
a process during which we can also build understanding of the models being fit.
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12.8 Predictions for new observations and new groups

Predictions for multilevel models can be more complicated than for classical re-
gression because we can apply the model to existing groups or new groups. After
a brief review of classical regression prediction, we explain in the context of the
radon model.

Review of prediction for classical regression

In classical regression, prediction is simple: specify the predictor matrix X̃ for a set
of new observations5 and then compute the linear predictor X̃β, then simulate the
predictive data:

• For linear regression, simulate independent normal errors ϵ̃i with mean 0 and
standard deviation σ, and compute ỹ = X̃β + ϵ̃; see Section 7.2.

• For logistic regression, simulate the predictive binary data: Pr(ỹi) = logit−1(X̃iβ)
for each new data point i; see Section 7.4.

• With binomial logistic regression, specify the number of tries ñi for each new
unit i, and simulate ỹi from the binomial distribution with parameters ñi and
logit−1(X̃iβ); see Section 7.4.

• With Poisson regression, specify the exposures ũi for the new units, and simulate
ỹi ∼ Poisson(ũieX̃iβ) for each new i; see Section 7.4.

As discussed in Section 7.2, the estimation for a regression in R gives a set of nsims

simulation draws. Each of these is used to simulate the predictive data vector ỹ,
yielding a set of nsims simulated predictions. For example, in the election forecasting
example of Figure 7.5 on page 146:

R code model.1 <- lm (vote.88 ~ vote.86 + party.88 + inc.88)

display (model.1)
n.sims <- 1000

sim.1 <- sim (model.1, n.sims)
beta.sim <- sim.1$beta
sigma.sim <- sim.1$sigma

n.tilde <- length (vote.88)
X.tilde <- cbind (rep(1,n.tilde), vote.88, party.90, inc.90)
y.tilde <- array (NA, c(n.sims, n.tilde))
for (s in 1:n.sims) {

y.tilde[s,] <- rnorm (n.tilde, X.tilde%*%beta.sim[s,], sigma.sim[s])
}

This matrix of simulations can be used to get point predictions (for example,
median(y.tilde[,3]) gives the median estimate for ỹ3) or predictive intervals
(for example, quantile(y.tilde[,3],c(.025,.975))) for individual data points
or for more elaborate derived quantities, such as the predicted number of seats
won by the Democrats in 1990 (see the end of Section 7.3). For many applications,
the predict() function in R is a good way to quickly get point predictions and
intervals (see page 48); here we emphasize the more elaborate simulation approach
which allows inferences for arbitrary quantities.

5 Predictions are more complicated for time-series models: even when parameters are fit by clas-
sical regression, predictions must be made sequentially. See Sections 8.4 and 24.2 for examples.
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Prediction for a new observation in an existing group

We can make two sorts of predictions for the radon example: predicting the radon
level for a new house within one of the counties in the dataset, and for a new house
in a new county. We shall work with model (12.15) on page 266, with floor as an
individual-level predictor and uranium as a group-level predictor

For example, suppose we wish to predict ỹ, the log radon level for a house with no
basement (thus, with radon measured on the first floor, so that x̃ = 1) in Hennepin
County (j = 26 of our Minnesota dataset). Conditional on the model parameters,
the predicted value has a mean of α26 + β and a standard deviation of σy . That is,

ỹ|θ ∼ N(α26 + βx̃, σ2
y),

where we are using θ to represent the entire vector of model parameters.
Given estimates of α, β, and σy , we can create a predictive simulation for ỹ using

R code such as

R codex.tilde <- 1

sigma.y.hat <- sigma.hat(M2)$sigma$data
coef.hat <- as.matrix(coef(M2)$county)[26,]
y.tilde <- rnorm (1, coef.hat %*% c(1, x.tilde, u[26]), sigma.y.hat)

More generally, we can create a vector of n.sims simulations to represent the pre-
dictive uncertainty in ỹ:

R coden.sims <- 1000

coef.hat <- as.matrix(coef(M2)$county)[26,]
y.tilde <- rnorm (1000, coef.hat %*% c(1, x.tilde, u[26]), sigma.y.hat)

Still more generally, we can add in the inferential uncertainty in the estimated
parameters, α, β, and σ. For our purposes here, however, we shall ignore inferential
uncertainty and just treat the parameters α, β, σy , σα as if they were estimated
perfectly from the data.6 In that case, the computation gives us 1000 simulation
draws of ỹ, which we can summarize in various ways. For example,

R codequantile (y.tilde, c(.25,.5,.75))

gives us a predictive median of 0.76 and a 50% predictive interval of [0.26, 1.27].
Exponentiating gives us a prediction on the original (unlogged) scale of exp(0.76) =
2.1, with a 50% interval of [1.3, 3.6].

For some applications we want the average, rather than the median, of the pre-
dictive distribution. For example, the expected risk from radon exposure is propor-
tional to the predictive average or mean, which we can compute directly from the
simulations:

R codeunlogged <- exp(y.tilde)

mean (unlogged)

In this example, the predictive mean is 2.9, which is a bit higher than the median
of 2.1. This makes sense: on the unlogged scale, this predictive distribution is skewed
to the right.

6 One reason we picked Hennepin County (j = 26) for this example is that, with a sample size
of 105, its average radon level is accurately estimated from the available data.
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Prediction for a new observation in a new group

Now suppose we want to predict the radon level for a house, once again with no
basement, but this time in a county not included in our analysis. We then must
generate a new county-level error term, α̃, which we sample from its N(γ0+γ1ũj, σ2

α)
distribution. We shall assume the new county has a uranium level equal to the
average of the uranium levels in the observed counties:

R code u.tilde <- mean (u)

grab the estimated γ0, γ1, σα from the fitted model:

R code g.0.hat <- fixef(M2)["(Intercept)"]

g.1.hat <- fixef(M2)["u.full"]
sigma.a.hat <- sigma.hat(M2)$sigma$county

and simulate possible intercepts for the new county:

R code a.tilde <- rnorm (n.sims, g.0.hat + g.1.hat*u.tilde, sigma.a.hat)

We can then simulate possible values of the radon level for the new house in this
county:

R code y.tilde <- rnorm (n.sims, a.tilde + b.hat*x.tilde, sigma.y.hat)

Each simulation draw of ỹ uses a different simulation of α̃, thus propagating the
uncertainty about the new county into the uncertainty about the new house in this
county.
Comparison of within-group and between-group predictions. The resulting predic-
tion will be more uncertain than for a house in a known county, since we have no
information about α̃. Indeed, the predictive 50% interval of this new ỹ is [0.28, 1.34],
which is slightly wider than the predictive interval of [0.26, 1.27] for the new house
in county 26. The interval is only slightly wider because the within-county variation
in this particular example is much higher than the between-county variation.

More specifically, from the fitted model on page 266, the within-county (residual)
standard deviation σy is estimated at 0.76, and the between-county standard devi-
ation σα is estimated at 0.16. The log radon level for a new house in an already-
measured county can then be measured to an accuracy of about ±0.76. The log
radon level for a new house in a new county can be predicted to an accuracy of
about ±

√
0.762 + 0.162 = ±0.78. The ratio 0.78/0.76 is 1.03, so we would expect

the predictive interval for a new house in a new county to be about 3% wider
than for a new house in an already-measured county. The change in interval width
is small here because the unexplained between-county variance is so small in this
dataset.

For another example, the 50% interval for the log radon level of a house with no
basement in county 2 is [0.28, 1.30], which is centered in a different place but also
is narrower than the predictive interval for a new county.

Nonlinear predictions

Section 7.3 illustrated the use of simulation for nonlinear predictions from classical
regression. We can perform similar calculations in multilevel models. For example,
suppose we are interested in the average radon level among all the houses in Hen-
nepin County (j = 26). We can perform this inference using poststratification, first
estimating the average radon level of the houses with and without basements in the
county, then weighting these by the proportion of houses in the county that have
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basements. We can look up this proportion from other data sources on homes, or
we can estimate it from the available sample data.

For our purposes here, we shall assume that 90% of all the houses in Hennepin
County have basements. The average radon level of all the houses in the county is
then 0.1 times the average for the houses in Hennepin County without basements,
plus 0.9 times the average for those with basements. To simulate in R:

R codey.tilde.basement <- rnorm (n.sims, a.hat[26], sigma.y.hat)
y.tilde.nobasement <- rnorm (n.sims, a.hat[26] + b.hat, sigma.y.hat)

We then compute the estimated mean for 1000 houses of each type in the county
(first exponentiating since our model was on the log scale):

R codemean.radon.basement <- mean (exp (y.tilde.basement))
mean.radon.nobasement <- mean (exp (y.tilde.nobasement))

and finally poststratify given the proportion of houses of each type in the county:

R codemean.radon <- .9*mean.radon.basement + .1*mean.radon.basement

In Section 16.6 we return to the topic of predictions, using simulations from Bugs
to capture the uncertainty in parameter estimates and then propagating inferential
uncertainty into the predictions, rather than simply using point estimates a.hat,
b.hat, and so forth.

12.9 How many groups and how many observations per group are
needed to fit a multilevel model?

Advice is sometimes given that multilevel models can only be used if the number of
groups is higher than some threshold, or if there is some minimum number of obser-
vations per groups. Such advice is misguided. Multilevel modeling includes classical
regression as a limiting case (complete pooling when group-level variances are zero,
no pooling when group-level variances are large). When sample sizes are small, the
key concern with multilevel modeling is the estimation of variance parameters, but
it should still work at least as well as classical regression.

How many groups?

When J , the number of groups, is small, it is difficult to estimate the between-group
variation and, as a result, multilevel modeling often adds little in such situations,
beyond classical no-pooling models. The difficulty of estimating variance parameters
is a technical issue to which we return in Section 19.6; to simplify, when σα cannot
be estimated well, it tends to be overestimated, and so the partially pooled estimates
are close to no pooling (this is what happens when σα has a high value in (12.16)
on page 269).

At the same time, multilevel modeling should not do any worse than no-pooling
regression and sometimes can be easier to interpret, for example because one can
include indicators for all J groups rather than have to select one group as a baseline
category.

One or two groups

With only one or two groups, however, multilevel modeling reduces to classical
regression (unless “prior information” is explicitly included in the model; see Section
18.3). Here we usually express the model in classical form (for example, including
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a single predictor for female, rather than a multilevel model for the two levels of
the sex factor).

Even with only one or two groups in the data, however, multilevel models can
be useful for making predictions about new groups. See also Sections 21.2–22.5 for
further connections between classical and multilevel models, and Section 22.6 for
hierarchical models for improving estimates of variance parameters in settings with
many grouping factors but few levels per factor.

How many observations per group?

Even two observations per group is enough to fit a multilevel model. It is even
acceptable to have one observation in many of the groups. When groups have few
observations, their αj ’s won’t be estimated precisely, but they can still provide par-
tial information that allows estimation of the coefficients and variance parameters
of the individual- and group-level regressions.

Larger datasets and more complex models

As more data arise, it makes sense to add parameters to a model. For example,
consider a simple medical study, then separate estimates for men and women, other
demographic breakdowns, different regions of the country, states, smaller geographic
areas, interactions between demographic and geographic categories, and so forth.
As more data become available it makes sense to estimate more. These complexities
are latent everywhere, but in small datasets it is not possible to learn so much, and
it is not necessarily worth the effort to fit a complex model when the resulting
uncertainties will be so large.

12.10 Bibliographic note

Multilevel models have been used for decades in agriculture (Henderson, 1950,
1984, Henderson et al., 1959, Robinson, 1991) and educational statistics (Novick
et al., 1972, 1973, Bock, 1989), where it is natural to model animals in groups
and students in classrooms. More recently, multilevel models have become popu-
lar in many social sciences and have been reviewed in books by Longford (1993),
Goldstein (1995), Kreft and De Leeuw (1998), Snijders and Bosker (1999), Verbeke
and Molenberghs (2000), Leyland and Goldstein (2001), Hox (2002), and Rauden-
bush and Bryk (2002). We do not attempt to trace here the many applications of
multilevel models in various scientific fields.

It might also be useful to read up on Bayesian inference to understand the the-
oretical background behind multilevel models.7 Box and Tiao (1973) is a classic
reference that focuses on linear models. It predates modern computational meth-
ods but might be useful for understanding the fundamentals. Gelman et al. (2003)
and Carlin and Louis (2000) cover applied Bayesian inference including the basics of
multilevel modeling, with detailed discussions of computational algorithms. Berger

7 As we discuss in Section 18.3, multilevel inferences can be formulated non-Bayesianly; however,
understanding the Bayesian derivations should help with the other approaches too. All mul-
tilevel models are Bayesian in the sense of assigning probability distributions to the varying
regression coefficients. The distinction between Bayesian and non-Bayesian multilevel mod-
els arises only for the question of modeling the other parameters—the nonvarying coefficients
and the variance parameters—and this is typically a less important issue, especially when the
number of groups is large.
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(1985) and Bernardo and Smith (1994) cover Bayesian inference from two different
theoretical perspectives.

The R function lmer() is described by Bates (2005a, b) and was developed from
the linear and nonlinear mixed effects software described in Pinheiro and Bates
(2000).

Multilevel modeling used to be controversial in statistics; see, for example, the
discussions of the papers by Lindley and Smith (1972) and Rubin (1980) for some
sense of the controversy.

The Minnesota radon data were analyzed by Price, Nero, and Gelman (1996);
see also Price and Gelman (2004) for more on home radon modeling.

Statistical researchers have studied partial pooling in many ways; see James and
Stein (1960), Efron and Morris (1979), DuMouchel and Harris (1983), Morris (1983),
and Stigler (1983). Louis (1984), Shen and Louis (1998), Louis and Shen (1999), and
Gelman and Price (1999) discuss some difficulties in the interpretation of partially
pooled estimates. Zaslavsky (1993) discusses adjustments for undercount in the
U.S. Census from a partial-pooling perspective. Normand, Glickman, and Gatsonis
(1997) discuss the use of multilevel models for evaluating health-care providers.

12.11 Exercises

1. Using data of your own that are appropriate for a multilevel model, write the
model in the five ways discussed in Section 12.5.

2. Continuing with the analysis of the CD4 data from Exercise 11.4:

(a) Write a model predicting CD4 percentage as a function of time with varying
intercepts across children. Fit using lmer() and interpret the coefficient for
time.

(b) Extend the model in (a) to include child-level predictors (that is, group-level
predictors) for treatment and age at baseline. Fit using lmer() and interpret
the coefficients on time, treatment, and age at baseline.

(c) Investigate the change in partial pooling from (a) to (b) both graphically and
numerically.

(d) Compare results in (b) to those obtained in part (c).

3. Predictions for new observations and new groups:

(a) Use the model fit from Exercise 12.2(b) to generate simulation of predicted
CD4 percentages for each child in the dataset at a hypothetical next time
point.

(b) Use the same model fit to generate simulations of CD4 percentages at each of
the time periods for a new child who was 4 years old at baseline.

4. Posterior predictive checking: continuing the previous exercise, use the fitted
model from Exercise 12.2(b) to simulate a new dataset of CD4 percentages (with
the same sample size and ages of the original dataset) for the final time point of
the study, and record the average CD4 percentage in this sample. Repeat this
process 1000 times and compare the simulated distribution to the observed CD4
percentage at the final time point for the actual data.

5. Using the radon data, include county sample size as a group-level predictor and
write the varying-intercept model. Fit this model using lmer().

6. Return to the beauty and teaching evaluations introduced in Exercise 3.5 and
4.8.
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(a) Write a varying-intercept model for these data with no group-level predictors.
Fit this model using lmer() and interpret the results.

(b) Write a varying-intercept model that you would like to fit including three
group-level predictors. Fit this model using lmer() and interpret the results.

(c) How does the variation in average ratings across instructors compare to the
variation in ratings across evaluators for the same instructor?

7. This exercise will use the data you found for Exercise 4.7. This time, rather than
repeating the same analysis across each year, or country (or whatever group the
data varies across), fit a multilevel model using lmer() instead. Compare the
results to those obtained in your earlier analysis.

8. Simulate data (outcome, individual-level predictor, group indicator, and group-
level predictor) that would be appropriate for a multilevel model. See how partial
pooling changes as you vary the sample size in each group and the number of
groups.

9. Number of observations and number of groups:

(a) Take a simple random sample of one-fifth of the radon data. (You can cre-
ate this subset using the sample() function in R.) Fit the varying-intercept
model with floor as an individual-level predictor and log uranium as a county-
level predictor, and compare your inferences to what was obtained by fitting
the model to the entire dataset. (Compare inferences for the individual- and
group-level standard deviations, the slopes for floor and log uranium, the av-
erage intercept, and the county-level intercepts.)

(b) Repeat step (a) a few times, with a different random sample each time, and
summarize how the estimates vary.

(c) Repeat step (a), but this time taking a cluster sample: a random sample of
one-fifth of the counties, but then all the houses within each sampled county.



CHAPTER 13

Multilevel linear models: varying slopes,
non-nested models, and other

complexities

This chapter considers some generalizations of the basic multilevel regression. Mod-
els in which slopes and intercepts can vary by group (for example, yi = αj[i] +
βj[i]xi + · · · , where α and β both vary by group j; see Figure 11.1c on page 238)
can also be interpreted as interactions of the group index with individual-level pre-
dictors.

Another direction is non-nested models, in which a given dataset can be struc-
tured into groups in more than one way. For example, persons in a national survey
can be divided by demographics or by states. Responses in a psychological experi-
ment might be classified by person (experimental subject), experimental condition,
and time.

The chapter concludes with some examples of models with nonexchangeable mul-
tivariate structures. We continue with generalized linear models in Chapters 14–15
and discuss how to fit all these models in Chapters 16–19.

13.1 Varying intercepts and slopes

The next step in multilevel modeling is to allow more than one regression coefficient
to vary by group. We shall illustrate with the radon model from the previous chap-
ter, which is relatively simple because it only has a single individual-level predictor,
x (the indicator for whether the measurement was taken on the first floor).

We begin with a varying-intercept, varying-slope model including x but without
the county-level uranium predictor; thus,

yi ∼ N(αj[i] + βj[i]xi, σ2
y), for i = 1, . . . , n

(
αj

βj

)
∼ N

((
µα

µβ

)
,

(
σ2

α ρσασβ

ρσασβ σ2
β

))
, for j = 1, . . . , J, (13.1)

with variation in the αj ’s and the βj’s and also a between-group correlation param-
eter ρ. In R:

R codeM3 <- lmer (y ~ x + (1 + x | county))
display (M3)

which yields

R outputlmer(formula = y ~ x + (1 + x | county))

coef.est coef.se
(Intercept) 1.46 0.05
x -0.68 0.09

Error terms:
Groups Name Std.Dev. Corr
county (Intercept) 0.35

x 0.34 -0.34

279
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Residual 0.75
# of obs: 919, groups: county, 85

deviance = 2161.1

In this model, the unexplained within-county variation has an estimated standard
deviation of σ̂y = 0.75; the estimated standard deviation of the county intercepts
is σ̂α = 0.35; the estimated standard deviation of the county slopes is σ̂β = 0.34;
and the estimated correlation between intercepts and slopes is −0.34.

We then can type
R code coef (M3)

to yield
R output $county

(Intercept) x
1 1.14 -0.54
2 0.93 -0.77

3 1.47 -0.67
. . .
85 1.38 -0.65

Or we can separately look at the estimated population mean coefficients µα, µβ and
then the estimated errors for each county. First, we type

R code fixef (M3)

to see the estimated average coefficients (“fixed effects”):
R output (Intercept) x

1.46 -0.68

Then, we type
R code ranef (M3)

to see the estimated group-level errors (“random effects”):
R output (Intercept) x

1 -0.32 0.14
2 -0.53 -0.09
3 0.01 0.01

. . .
85 -0.08 0.03

We can regain the estimated intercept and slope αj , βj for each county by simply
adding the errors to µα and µβ ; thus, the estimated regression line for county 1 is
(1.46 − 0.32) + (−0.68 + 0.14)x = 1.14 − 0.54x, and so forth.

The group-level model for the parameters (αj , βj) allows for partial pooling in
the estimated intercepts and slopes. Figure 13.1 shows the results—the estimated
lines y = αj + βjx—for the radon data in eight different counties.

Including group-level predictors

We can expand the model of (α, β) in (13.1) by including a group-level predictor
(in this case, soil uranium):

(
αj

βj

)
∼ N

((
γα
0 + γα

1 uj

γβ
0 + γβ

1 uj

)
,

(
σ2

α ρσασβ

ρσασβ σ2
β

))
, for j = 1, . . . , J. (13.2)

The resulting estimates for the αj ’s and βj ’s are changed slightly from what is
displayed in Figure 13.1, but more interesting are the second-level models them-
selves, whose estimates are shown in Figure 13.2. Here is the result of fitting the
model in R:
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Figure 13.1 Multilevel (partial pooling) regression lines y = αj + βjx, displayed for eight
counties j. In this model, both the intercept and the slope vary by county. The light solid
and dashed lines show the no-pooling and complete pooling regression lines. Compare to
Figure 12.4, in which only the intercept varies.
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−

− − − −−
−

−

−

Figure 13.2 (a) Estimates ± standard errors for the county intercepts αj, plotted versus
county-level uranium measurement uj, along with the estimated multilevel regression line,
α = γα

0 + γα
1 u. (b) Estimates ± standard errors for the county slopes βj , plotted versus

county-level uranium measurement uj, along with the estimated multilevel regression line,
β = γβ

0 + γβ
1 u. Estimates and standard errors are the posterior medians and standard

deviations, respectively. For each graph, the county coefficients roughly follow the line
but not exactly; the discrepancies of the coefficients from the line are summarized by the
county-level standard-deviation parameters σα, σβ.

R outputlmer(formula = y ~ x + u.full + x:u.full + (1 + x | county))

coef.est coef.se
(Intercept) 1.47 0.04

x -0.67 0.08
u.full 0.81 0.09
x:u.full -0.42 0.23

Error terms:
Groups Name Std.Dev. Corr
county (Intercept) 0.12

x 0.31 0.41
Residual 0.75
# of obs: 919, groups: county, 85

deviance = 2114.3

The parameters γα
0 , γβ

0 , γα
1 , γβ

1 in model (13.2) are the coefficients for the intercept,
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x, u.full, and x:u.full, respectively, in the regression. In particular, the inter-
action corresponds to allowing uranium to be a predictor in the regression for the
slopes.

The estimated coefficients in each group (from coef(M4)) are:
R output $county

(Intercept) x u.full x:u.full
1 1.46 -0.65 0.81 -0.42

2 1.50 -0.89 0.81 -0.42
. . .
85 1.44 -0.70 0.81 -0.42

Or we can display the average coefficients (using fixef(M4)):
R output (Intercept) x u.full x:u.full

1.47 -0.67 0.81 -0.42

and the group-level errors for the intercepts and slopes (using ranef(M4)):
R output (Intercept) x

1 -0.01 0.02
2 0.03 -0.21
. . .

85 -0.02 -0.03

The coefficients for the intercept and x vary, as specified in the model. This can be
compared to the model on page 267 in which only the intercept varies.

Going from lmer output to intercepts and slopes

As before, we can combine the average coefficients with the group-level errors to
compute the intercepts αj and slopes βj of model (13.2). For example, the fitted
regression model in county 85 is yi = 1.47 − 0.67xi + 0.81u85 − 0.42xiu85 − 0.02 −
0.03xi. The log uranium level in county 85, u85, is 0.36, and so the fitted regression
line in county 85 is yi = 1.73− 0.85xi. More generally, we can compute a vector of
county intercepts α and slopes β:

R code a.hat.M4 <- coef(M4)[,1] + coef(M4)[,3]*u

b.hat.M4 <- coef(M4)[,2] + coef(M4)[,4]*u

Here it is actually useful to have the variable u defined at the county level (as
compared to u.full = u[county] which was used in the lmer() call). We next
consider these linear transformations algebraically.

Varying slopes as interactions

Section 12.5 gave multiple ways of writing the basic multilevel model. These same
ideas apply to models with varying slopes, which can be considered as interactions
between group indicators and an individual-level predictor. For example, consider
the model with an individual-level predictor xi and a group-level predictor uj,

yi = αj[i] + βj[i]xi + ϵi

αj = γα
0 + γα

1 uj + ηα
j

βj = γβ
0 + γβ

1 uj + ηβ
j .

We can re-express this as a single model by substituting the formulas for αj and
βj into the equation for yi:

yi =
[
γα
0 + γα

1 uj[i] + ηα
j[i]

]
+

[
γβ
0 + γβ

1 uj[i] + ηβ
j[i]

]
xi + ϵi. (13.3)
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This expression looks messy but it is really just a regression including various
interactions. If we define a new individual-level predictor vi = uj[i] (in the radon
example, this is the uranium level in the county where your house is located), we
can re-express (13.3) term by term as

yi = a + bvi + cj[i] + dxi + evixi + fj[i]xi + ϵi.

This can be thought of in several ways:

• A varying-intercept, varying-slope model with four individual-level predictors
(the constant term, vi, xi, and the interaction vixi) and varying intercepts and
slopes that are centered at zero.

• A regression model with 4 + 2J predictors: the constant term, vi, xi, vixi, indi-
cators for the J groups, and interactions between x and the J group indicators.

• A regression model with four predictors and three error terms.

• Or, to go back to the original formulation, a varying-intercept, varying-slope
model with one group-level predictor.

Which of these expressions is most useful depends on the context. In the radon
analysis, where the goal is to predict radon levels in individual counties, the varying-
intercept, varying-slope formulation, as pictured in Figure 13.2, seems most appro-
priate. But in a problem where interest lies in the regression coefficients for xi,
uj, and their interaction, it can be more helpful to focus on these predictors and
consider the unexplained variation in intercepts and slopes merely as error terms.

13.2 Varying slopes without varying intercepts

Figure 11.1 on page 238 displays a varying-intercept model, a varying-slope model,
and a varying-intercept, varying-slope model. Almost always, when a slope is al-
lowed to vary, it makes sense for the intercept to vary also. That is, the graph in
the center of Figure 11.1b usually does not make sense. For example, if the coeffi-
cient of floor varies with county, then it makes sense to allow the intercept of the
regression to vary also. It would be an implausible scenario in which the counties
were all identical in radon levels for houses without basements, but differed in their
coefficients for x.

A situation in which a constant-intercept, varying-slope model is appropriate

Occasionally it is reasonable to allow the slope but not the intercept to vary by
group. For example, consider a study in which J separate experiments are performed
on samples from a common population, with each experiment randomly assigning
a control condition to half its subjects and a treatment to the other half. Further
suppose that the “control” conditions are the same for each experiment but the
“treatments” vary. In that case, it would make sense to fix the intercept and allow
the slope to vary—thus, a basic model of:

yi ∼ N(α + θj[i]Ti, σ2
y)

θj ∼ N(µθ, σ
2
θ), (13.4)

where Ti = 1 for treated units and 0 for controls. Individual-level predictors could
be added to the regression for y, and any interactions with treatment could also
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have varying slopes; for example,

yi ∼ N(α + βxi + θ1,j[i]Ti + β2,j[i]xiTi, σ2
y)

(
θ1,j

θ2,j

)
∼ N

((
µ1

µ2

)
,

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

))
, for j = 1, . . . , J, (13.5)

The multilevel model could be further extended with group-level predictors char-
acterizing the treatments.

Fitting in R

To fit such a model in lmer(), we must explicitly remove the intercept from the
group of coefficients that vary by group; for example, here is model (13.4) including
the treatment indicator T as a predictor:

R code lmer (y ~ T + (T - 1 | group))

The varying slope allows a different treatment effect for each group.
And here is model (13.5) with an individual-level predictor x:

R code lmer (y ~ x + T + (T + x:T - 1 | group))

Here, the treatment effect and its interaction with x vary by group.

13.3 Modeling multiple varying coefficients using the scaled
inverse-Wishart distribution

When more than two coefficients vary (for example, yi ∼ N(β0+β1Xi1+β2Xi2, σ2),
with β0, β1, and β2 varying by group), it is helpful to move to matrix notation in
modeling the coefficients and their group-level regression model and covariance
matrix.

Simple model with two varying coefficients and no group-level predictors

Starting with the model that begins this chapter, we can rewrite the basic varying-
intercept, varying-slope model (13.1) in matrix notation as

yi ∼ N(XiBj[i], σ2
y), for i = 1, . . . , n

Bj ∼ N(MB, ΣB), for j = 1, . . . , J, (13.6)

where
• X is the n×2 matrix of predictors: the first column of X is a column of 1’s (that

is, the constant term in the regression), and the second column is the predictor
x. Xi is then the vector of length 2 representing the ith row of X , and XiBj[i] is
simply αj[i] + βj[i]xi from the top line of (13.1).

• B = (α, β) is the J × 2 matrix of individual-level regression coefficients. For any
group j, Bj is a vector of length 2 corresponding to the jth row of B (although
for convenience we consider Bj as a column vector in the product XiBj[i] in
model (13.6)). The two elements of Bj correspond to the intercept and slope,
respectively, for the regression model in group j. Bj[i] in the first line of (13.6)
is the j[i]th row of B, that is, the vector representing the intercept and slope for
the group that includes unit i.

• MB = (µα, µβ) is a vector of length 2, representing the mean of the distribution
of the intercepts and the mean of the distribution of the slopes.
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• ΣB is the 2 × 2 covariance matrix representing the variation of the intercepts
and slopes in the population of groups, as in the second line of (13.1).

We are following our general notation in which uppercase letters represent matrices:
thus, the vectors α and β are combined into the matrix B.

In the fitted radon model on page 279, the parameters of the group-level model are

estimated at M̂B = (1.46,−0.68) and Σ̂B =
(

σ̂2
a ρ̂σ̂aσ̂b

ρ̂σ̂aσ̂b σ̂2
b

)
, where σ̂a = 0.35,

σ̂b = 0.34, and ρ̂ = −0.34. The estimated coefficient matrix B̂ is given by the 85×2
array at the end of the display of coef(M3) on page 280.

More than two varying coefficients

The same expression as above holds, except that the 2’s are replaced by K’s, where
K is the number of individual-level predictors (including the intercept) that vary by
group. As we discuss shortly in the context of the inverse-Wishart model, estimation
becomes more difficult when K > 2 because of constraints among the correlation
parameters of the covariance matrix ΣB.

Including group-level predictors

More generally, we can have J groups, K individual-level predictors, and L pre-
dictors in the group-level regression (including the constant term as a predictor in
both cases). For example, K = L = 2 in the radon model that has floor as an
individual predictor and uranium as a county-level predictor.

We can extend model (13.6) to include group-level predictors:

yi ∼ N(XiBj[i], σ2
y), for i = 1, . . . , n

Bj ∼ N(UjG, ΣB), for j = 1, . . . , J, (13.7)

where B is the J ×K matrix of individual-level coefficients, U is the J ×L matrix
of group-level predictors (including the constant term), and G is the L×K matrix
of coefficients for the group-level regression. Uj is the jth row of U , the vector of
predictors for group j, and so UjG is a vector of length K.

Model (13.1) is a special case with K = L = 2, and the coefficients in G are
then γα

0 , γβ
0 , γα

1 , γβ
1 . For the fitted radon model on page 279, the γ’s are the four

unmodeled coefficients (for the intercept, x, u.full, and x:u.full, respectively),
and the two columns of the estimated coefficient matrix B̂ are estimated by a.hat
and b.hat, as defined by the R code on page 282.

Including individual-level predictors whose coefficients do not vary by group

The model can be further expanded by adding unmodeled individual-level coeffi-
cients, so that the top line of (13.7) becomes

yi ∼ N(X0
i β0 + XiBj[i], σ2

y), for i = 1, . . . , n, (13.8)

where X0 is a matrix of these additional predictors and β0 is the vector of their
regression coefficients (which, by assumption, are common to all the groups).

Model (13.8) is sometimes called a mixed-effects regression, where the β0’s and
the B’s are the fixed and random effects, respectively. As noted on pages 2 and
245, we avoid these terms because of their ambiguity in the statistical literature.
For example, sometimes unvarying coefficients such as the β0’s in model (13.8) are
called “fixed,” but sometimes the term “fixed effects” refers to intercepts that vary
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by groups but are not given a multilevel model (this is what we call the “no-pooling
model,” as pictured, for example, by the solid lines in Figure 12.2 on page 255).

Equivalently, model (13.8) can be written by folding X0 and X into a common
predictor matrix X , folding β0 and B into a common coefficient matrix B, and
using model (13.1), with the appropriate elements in ΣB set to zero, implying no
variation among groups for certain coefficients.

Modeling the group-level covariance matrix using the scaled inverse-Wishart
distribution

When the number K of varying coefficients per group is more than two, modeling
the correlation parameters ρ is a challenge. In addition to each of the correlations
being restricted to fall between −1 and 1, the correlations are jointly constrained in
a complicated way—technically, the covariance matrix Σβ must be positive definite.
(An example of the constraint is: if ρ12 = 0.9 and ρ13 = 0.9, then ρ23 must be at
least 0.62.)

Modeling and estimation are more complicated in this jointly constrained space.
We first introduce the inverse-Wishart model, then generalize to the scaled inverse-
Wishart, which is what we recommend for modeling the covariance matrix of the
distribution of varying coefficients.

Inverse-Wishart model. One model that has been proposed for the covariance
matrix Σβ is the inverse-Wishart distribution, which has the advantage of being
computationally convenient (especially when using Bugs, as we illustrate in Section
17.1) but the disadvantage of being difficult to interpret.

In the model ΣB ∼ Inv-WishartK+1(I), the two parameters of the inverse-
Wishart distribution are the degrees of freedom (here set to K +1, where K is
the dimension of B, that is, the number of coefficients in the model that vary by
group) and the scale (here set to the K × K identity matrix).

To understand this model, we consider its implications for the standard deviation
and correlations. Recall that if there are K varying coefficients, then ΣB is a K×K
matrix, with diagonal elements Σkk = σ2

k and off-diagonal-elements Σkl = ρklσkσl

(generalizing models (13.1) and (13.2) to K > 2).
Setting the degrees-of-freedom parameter to K +1 has the effect of setting a

uniform distribution on the individual correlation parameters (that is, they are
assumed equally likely to take on any value between −1 and 1).

Scaled inverse-Wishart model. When the degrees of freedom parameter of the
inverse-Wishart distribution is set to K+1, the resulting model is reasonable for the
correlations but is quite constraining on the scale parameters σk. This is a prob-
lem because we would like to estimate σk from the data. Changing the degrees of
freedom allows the σk’s to be estimated more freely, but at the cost of constraining
the correlation parameters.

We get around this problem by expanding the inverse-Wishart model with a new
vector of scale parameters ξk:

ΣB = Diag(ξ)QDiag(ξ),

with the unscaled covariance matrix Q being given the inverse-Wishart model:

Q ∼ Inv-WishartK+1(I).

The variances then correspond to the diagonal elements of the unscaled covariance
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blacks hispanics whites others

Figure 13.3 Multilevel regression lines y = αj+βjx for log earnings on height (among those
with positive earnings), in four ethnic categories j. The gray lines indicate uncertainty in
the fitted regressions.

α

β

Figure 13.4 Scatterplot of estimated intercepts and slopes (for whites, hispanics, blacks,
and others), (αj , βj), for the earnings-height regressions shown in Figure 13.3. The ex-
treme negative correlation arises because the center of the range of height is far from zero.
Compare to the coefficients in the rescaled model, as displayed in Figure 13.7.

matrix Q, multiplied by the appropriate scaling factors ξ:

σ2
k = Σkk = ξ2

kQkk, for k = 1, . . . , K,

and the covariances are

Σkl = ξkξlQkl, for k, l = 1, . . . , K,

We prefer to express in terms of the standard deviations,

σk = |ξk|
√

Qkk,

and correlations
ρkl = Σkl/(σkσl).

The parameters in ξ and Q cannot be interpreted separately: they are a convenient
way to set up the model, but it is the standard deviations σk and the correlations ρkl

that are of interest (and which are relevant for producing partially pooled estimates
for the coefficients in B).

As with the unscaled Wishart, the model implies a uniform distribution on the
correlation parameters. As we discuss next, it can make sense to transform the data
to remove any large correlations that could be expected simply from the structure
of the data.

13.4 Understanding correlations between group-level intercepts and
slopes

Recall that varying slopes can be interpreted as interactions between an individual-
level predictor and group indicators. As with classical regression models with in-
teractions, the intercepts can often be more clearly interpreted if the continuous
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Figure 13.5 Sketch illustrating the difficulty of simultaneously estimating α and β. The
lines show the regressions for the four ethnic groups as displayed in Figure 13.3: the center
of the range of x values is far from zero, and so small changes in the slope induce large
changes in the intercept.

−

blacks

−

hispanics

−

whites

−

others

Figure 13.6 Multilevel regression lines y = αj + βjz, for log earnings given mean-adjusted
height (zi = xi − x̄), in four ethnic groups j. The gray lines indicate uncertainty in the
fitted regressions.

predictor is appropriately centered. We illustrate with the height and earnings ex-
ample from Chapter 4.

We begin by fitting a multilevel model of log earnings given height, allowing the
coefficients to vary by ethnicity. The data and fitted model are displayed in Figure
13.3. (Little is gained by fitting a multilevel model here—with only four groups,
a classical no-pooling model would work nearly as well, as discussed in Section
12.9—but this is a convenient example to illustrate a general point.)

Figure 13.4 displays the estimates of (αj , βj) for the four ethnic groups, and they
have a strong negative correlation: the groups with high values of α have relatively
low values of β, and vice versa. This correlation occurs because the center of the
x-values of the data is far from zero. The regression lines have to go roughly through
the center of the data, and then changes in the slope induce opposite changes in
the intercept, as illustrated in Figure 13.5.

There is nothing wrong with a high correlation between the α’s and β’s, but
it makes the estimated intercepts more difficult to interpret. As with interaction
models in classical regression, it can be helpful to subtract the average value of the
continuous x before including it in the regression; thus, yi ∼ N(αj[i] + βj[i]zi, σ2

y),
where zi = xi−x̄. Figures 13.6 and 13.7 show the results for the earnings regression:
the correlation has pretty much disappeared. Centering the predictor x will not
necessarily remove correlations between intercepts and slopes—but any correlation
that remains can then be more easily interpreted. In addition, centering can speed
convergence of the Gibbs sampling algorithm used by Bugs and other software.

We fit this model, and the subsequent models in this chapter, in Bugs (see Chap-
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α
β

Figure 13.7 Scatterplot of estimated intercepts and slopes, (αj , βj), for the regression of
earnings on mean-adjusted height z, for the four groups j displayed in Figure 13.6. The
coefficients are no longer strongly correlated (compare to Figure 13.4).

ter 17 for examples of code) because, as discussed in Section 12.4, the current
version of lmer() does not work so well when the number of groups is small—and,
conversely, with these small datasets, Bugs is not too slow.

13.5 Non-nested models

So far we have considered the simplest hierarchical structure of individuals i in
groups j. We now discuss models for more complicated grouping structures such as
introduced in Section 11.3.

Example: a psychological experiment with two potentially interacting factors

Figure 13.8 displays data from a psychological experiment of pilots on flight simu-
lators, with n = 40 data points corresponding to J = 5 treatment conditions and
K = 8 different airports. The responses can be fit to a non-nested multilevel model
of the form

yi ∼ N(µ + γj[i] + δk[i], σ2
y), for i = 1, . . . , n

γj ∼ N(0, σ2
γ), for j = 1, . . . , J

δk ∼ N(0, σ2
δ ), for k = 1, . . . , K. (13.9)

The parameters γj and δk represent treatment effects and airport effects. Their
distributions are centered at zero (rather than given mean levels µγ , µδ) because
the regression model for y already has an intercept, µ, and any nonzero mean for
the γ and δ distributions could be folded into µ. As we shall see in Section 19.4,
it can sometimes be effective for computational purposes to add extra mean-level
parameters into the model, but the coefficients in this expanded model must be
interpreted with care.

We can perform a quick fit as follows:

R codelmer (y ~ 1 + (1 | group.id) + (1 | scenario.id))

where group.id and scenario.id are the index variables for the five treatment
conditions and eight airports, respectively.

When fit to the data in Figure 13.8, the estimated residual standard deviations
at the individual, treatment, and airport levels are σ̂y = 0.23, σ̂γ = 0.04, and
σ̂δ = 0.32. Thus, the variation among airports is huge—even larger than that among
individual measurements—but the treatments vary almost not at all. This general
pattern can be seen in Figure 13.8.
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Figure 13.8 Success rates of pilots training on a flight simulator with five different treat-
ments and eight different airports. Shadings in the 40 cells i represent different success
rates yi, with black and white corresponding to 0 and 100%, respectively. For convenience
in reading the display, the treatments and airports have each been sorted in increasing order
of average success. These 40 data points have two groupings—treatments and airports—
which are not nested.

Data in matrix form

airport treatment conditions

1 0.38 0.25 0.50 0.14 0.43
2 0.00 0.00 0.67 0.00 0.00
3 0.38 0.50 0.33 0.71 0.29
4 0.00 0.12 0.00 0.00 0.86
5 0.33 0.50 0.14 0.29 0.86
6 1.00 1.00 1.00 1.00 0.86
7 0.12 0.12 0.00 0.14 0.14
8 1.00 0.86 1.00 1.00 0.75

Data in vector form

y j k

0.38 1 1
0.00 1 2
0.38 1 3
0.00 1 4
0.33 1 5
1.00 1 6
0.12 1 7
1.00 1 8
0.25 2 1
. . . . . . . . .

Figure 13.9 Data from Figure 13.8 displayed as an array (yjk) and in our preferred nota-
tion as a vector (yi) with group indicators j[i] and k[i].

Model (13.9) can also be written more cleanly as yjk ∼ N(µ+γj +δk, σ2
y), but we

actually prefer the more awkward notation using j[i] and k[i] because it emphasizes
the multilevel structure of the model and is not restricted to balanced designs. When
modeling a data array of the form (yjk), we usually convert it into a vector with
index variables for the rows and columns, as illustrated in Figure 13.9 for the flight
simulator data.

Example: regression of earnings on ethnicity categories, age categories, and height

All the ideas of the earlier part of this chapter, introduced in the context of a
simple structure of individuals within groups, apply to non-nested models as well.
For example, Figure 13.10 displays the estimated regression of log earnings, yi, on
height, zi (mean-adjusted, for reasons discussed in the context of Figures 13.3–
13.6), applied to the J = 4 ethnic groups and K = 3 age categories. In essence,
there is a separate regression model for each age group and ethnicity combination.
The multilevel model can be written, somewhat awkwardly, as a data-level model,

yi ∼ N(αj[i],k[i] + βj[i],k[i]zi, σ2
y), for i = 1, . . . , n,
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−

blacks, age 18−34

−

blacks, age 35−49

−

blacks, age 50−64

−

hispanics, age 18−34

−

hispanics, age 35−49

−

hispanics, age 50−64

−

whites, age 18−34

−

whites, age 35−49

−

whites, age 50−64

−

others, age 18−34

−

others, age 35−49

−

others, age 50−64

Figure 13.10 Multilevel regression lines y = β0
j,k + β1

j,kz, for log earnings y given mean-
adjusted height z, for four ethnic groups j and three age categories k. The gray lines
indicate uncertainty in the fitted regressions.

a decomposition of the intercepts and slopes into terms for ethnicity, age, and
ethnicity × age,

(
αj,k

βj,k

)
=

(
µ0

µ1

)
+

(
γeth
0j

γeth
1j

)
+

(
γage
0k

γage
1k

)
+

(
γeth×age
0jk

γeth×age
1jk

)
,

and models for variation,
(

γeth
0j

γeth
1j

)
∼ N

((
0
0

)
, Σeth

)
, for j = 1, . . . , J

(
γage
0k

γage
1k

)
∼ N

((
0
0

)
, Σage

)
, for k = 1, . . . , K

(
γeth×age
0jk

γeth×age
1jk

)
∼ N

((
0
0

)
, Σeth×age

)
, for j = 1, . . . , J ; k = 1, . . . , K.

Because we have included means µ0, µ1 in the decomposition above, we can center
each batch of coefficients at 0.
Interpretation of data-level variance. The data-level errors have estimated resid-
ual standard deviation σ̂y = 0.87. That is, given ethnicity, age group, and height,
log earnings can be predicted to within approximately ±0.87, and so earnings them-
selves can be predicted to within a multiplicative factor of e0.87 = 2.4. So earnings
cannot be predicted well at all by these factors, which is also apparent from the
scatter in Figure 13.10.

Interpretation of group-level variances. The group-level errors can be separated
into intercept and slope coefficients. The intercepts have estimated residual stan-
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B: 257 E: 230 A: 279 C: 287 D: 202
D: 245 A: 283 E: 245 B: 280 C: 260
E: 182 B: 252 C: 280 D: 246 A: 250
A: 203 C: 204 D: 227 E: 193 B: 259
C: 231 D: 271 B: 266 A: 334 E: 338

Figure 13.11 Data from a 5×5 latin square experiment studying the effects of five ordered
treatments on the yields of millet crops, from Snedecor and Cochran (1989). Each cell
shows the randomly assigned treatment and the observed yield for the plot.

dard deviations of (Σ̂eth
00 )1/2 = 0.08 at the ethnicity level, (Σ̂age

00 )1/2 = 0.25 at the
age level, and (Σ̂eth×age

00 )1/2 = 0.11 at the ethnicity × age level. Because we have
rescaled height to have a mean of zero (see Figure 13.10), we can interpret these
standard deviations as the relative importance of each factor (ethnicity, age group,
and their interaction) on log earnings at the average height in the population.

This model fits earnings on the log scale and so these standard deviations can
be interpreted accordingly. For example, the residual standard deviation of 0.08 for
the ethnicity coefficients implies that the predictive effects of ethnic groups in the
model are on the order of ±0.08, which correspond to multiplicative factors from
about e−0.08 = 0.92 to e0.08 = 1.08.

The slopes have estimated residual standard deviations of (Σ̂eth
11 )1/2 = 0.03 at

the ethnicity level, (Σ̂age
11 )1/2 = 0.02 at the age level, and (Σ̂eth×age

11 )1/2 = 0.02 at
the ethnicity × age level. These slopes are per inch of height, so, for example, the
predictive effects of ethnic groups in the model are in the range of ±3% in income
per inch of height. One can also look at the estimated correlation between intercepts
and slopes for each factor.

Example: a latin square design with grouping factors and group-level predictors

Non-nested models can also include group-level predictors. We illustrate with data
from a 5×5 latin square experiment, a design in which 25 units arranged in a square
grid are assigned five different treatments, with each treatment being assigned to one
unit in each row and each column. Figure 13.11 shows the treatment assignments
and data from a small agricultural experiment. There are three non-nested levels
of grouping—rows, columns, and treatments—and each has a natural group-level
predictor corresponding to a linear trend. (The five treatments are ordered.)

The corresponding multilevel model can be written as

yi ∼ N(µ + βrow
j[i] + βcolumn

k[i] + βtreat
l[i] , σ2

y), for i = 1, . . . , 25

βrow
j ∼ N(γrow · (j − 3), σ2

β row), for j = 1, . . . , 5

βcolumn
k ∼ N(γcolumn · (k − 3), σ2

β column), for k = 1, . . . , 5

βtreat
l ∼ N(γtreat · (l − 3), σ2

β treat), for l = 1, . . . , 5. (13.10)

Thus j, k, and l serve simultaneously as values of the row, column, and treatment
predictors.

By subtracting 3, we have centered the row, column, and treatment predictors at
zero; the parameter µ has a clear interpretation as the grand mean of the data, with
the different β’s supplying deviations for rows, columns, and treatments. As with
group-level models in general, the linear trends at each level potentially allow more
precise estimates of the group effects, to the extent that these trends are supported
by the data. An advantage of multilevel modeling here is that it doesn’t force a
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Figure 13.12 Estimates ±1 standard error for the row, column, and treatment effects for
the latin square data in Figure 13.11. The five levels of each factor are ordered, and the
lines display the estimated group-level regressions, y=µ+γrow

·(x−3), y =µ+γcolumn
·(x−3),

and y=µ+γtreat
· (x−3).

choice between a linear fit and separate estimates for each level of a predictor. (This
is an issue we discussed more generally in Chapter 11 in the context of including
group indicators as well as group-level predictors.)

Figure 13.12 shows the estimated row, column, and treatment effects on graphs,
along with the estimated linear trends. The grand mean µ has been added back to
each of these observations so that the plots are on the scale of the original data.
This sort of data structure is commonly studied using the analysis of variance,
whose connections with multilevel models we discuss fully in Chapter 22, including
a discussion of this latin square example in Section 22.5.

13.6 Selecting, transforming, and combining regression inputs

As with classical regression (see Section 4.5), choices must be made in multilevel
models about which input variables to include, and how best to transform and
combine them. We discuss here how some of these decisions can be expressed as
particular choices of parameters in a multilevel model. The topic of formalizing
modeling choices is currently an active area of research—key concerns include using
information in potential input variables without being overwhelmed by the com-
plexity of the relating model, and including model choice in uncertainty estimates.
As discussed in Section 9.5, the assumption of ignorability in observational studies
is more plausible when controlling for more pre-treatment inputs, which gives us a
motivation to include more regression predictors.

Classical models for regression coefficients

Multilevel modeling includes classical least squares regression as a special case.
In a multilevel model, each coefficient is part of a model with some mean and
standard deviation. (These mean values can themselves be determined by group-
level predictors in a group-level model.) In classical regression, every predictor is
either in or out of the model, and each of these options corresponds to a special
case of the multilevel model.

• If a predictor is “in,” this corresponds to a coefficient model with standard
deviation of ∞: no group-level information is used to estimate this parameter,
so it is estimated directly using least squares. It turns out that in this case
the group-level mean is irrelevant (see formula (12.16) on page 269 for the case
σα = ∞); for convenience we often set it to 0.

• If a predictor is “out,” this corresponds to a group-level model with group-level



294 VARYING SLOPES AND NON-NESTED MODELS

mean 0 and standard deviation 0: the coefficient estimate is then fixed at zero
(see (12.16) for the case σα = 0) with no uncertainty.

Multilevel modeling as an alternative to selecting regression predictors

Multilevel models can be used to combine inputs into more effective regression
predictors, generalizing some of the transformation ideas discussed in Section 4.6.
When many potential regression inputs are available, the fundamental approach is
to include as many of these inputs as possible, but not necessarily as independent
least squares predictors.

For example, Witte et al. (1994) describe a logistic regression in a case-control
study of 362 persons, predicting cancer incidence given information on consumption
of 87 different foods (and also controlling for five background variables which we do
not discuss further here). Each of the foods can potentially increase or decrease the
probability of cancer, but it would be hard to trust the result of a regression with
87 predictors fit to only 362 data points, and classical tools for selecting regression
predictors do not seem so helpful here. In our general notation, the challenge is to
estimate the logistic regression of cancer status y on the 362× 87 matrix X of food
consumption (and the 362 × 6 matrix X0 containing the constant term and the 5
background variables).

More information is available, however, because each of the 87 foods can be
characterized by its level of each of 35 nutrients, information that can be expressed
as an 87 × 36 matrix of predictors Z indicating how much of each nutrient is in
each food. Witte et al. fit the following multilevel model:

Pr(yi = 1) = logit−1(X0
i β0 + XiBj[i]), for i = 1, . . . , 362

Bj ∼ N(Zjγ, σ2
β), for j = 1, . . . , 87. (13.11)

The food-nutrient information in Z allows the multilevel model to estimate separate
predictive effects for foods, after controlling for systematic patterns associated with
nutrients. In the extreme case that σβ = 0, all the variation associated with the
foods is explained by the nutrients. At the other extreme, σβ = ∞ would imply
that the nutrient information is not helping at all.

Model (13.11) is helpful in reducing the number of food predictors from 87 to
35. At this point, Witte et al. used substantive understanding of diet and cancer
to understand the result. Ultimately, we would like to have a model that structures
the 35 predictors even more, perhaps by categorizing them into batches or com-
bining them in some way. The next example sketches how this might be done; it is
currently an active research topic to generally structure large numbers of regression
predictors.

Linear transformation and combination of inputs in a multilevel model

For another example, we consider the problem of forecasting presidential elections
by state (see Section 1.2). A forecasting model based on 11 recent national elections
has more than 500 “data points”—state-level elections—and can then potentially in-
clude many state-level predictors measuring factors such as economic performance,
incumbency, and popularity. However, at the national level there are really only
11 observations and so one must be parsimonious with national-level predictors.
In practice, this means performing some preliminary data analysis to pick a sin-
gle economic predictor, a single popularity predictor, and maybe one or two other
predictors based on incumbency and political ideology.
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Setting up a model to allow partial pooling of a set of regression predictors

A more general approach to including national predictors is possible using multilevel
modeling. For example, suppose we wish to include five measures of the national
economy (for example, change in GDP per capita, change in unemployment, and
so forth). The usual approach (which we have followed in the past in this problem)
is to choose one of these as the economic predictor, x, thus writing the model as

yi = α + βxi + · · · , (13.12)

where the dots indicate all the rest of the model, including other state-level and
national predictors, as well as error terms at the state, regional, and national levels.
Here we focus on the economic inputs, for simplicity setting aside the rest of the
model.

Instead of choosing just one of the five economic inputs, it would perhaps be
better first to standardize each of them (see Section 4.2), orient them so they are
in the same direction, label these standardized variables as X(j), for j = 1, . . . , 5,
and then average them into a single predictor, defined for each data point as

xavg
i =

1
5

5∑

j=1

∑
Xij , for i = 1, . . . .n. (13.13)

This new xavg can be included in place of x as the regression predictor in (13.12),
or, equivalently,

yi = α + βxavg
i + · · ·

= α +
1
5
βXi1 + · · · +

1
5
βXi5 + · · · .

The resulting model will represent an improvement to the extent that the average
of the five standardized economy measures is a better predictor than the single
measure chosen before.

However, model (13.13) is limited in that it restricts the coefficients of the five
separate xj ’s to be equal. More generally, we can replace (13.13) by a weighted
average:

xw.avg
i =

1
5

5∑

j=1

γjXij , for i = 1, . . . , n, (13.14)

so that the data model becomes

yi = α + βxw.avg
i + · · ·

= α +
1
5
γ1βXi1 + · · · +

1
5
γ5βXi5 + · · · . (13.15)

We would like to estimate the relative coefficients γj from the data, but we cannot
simply use classical regression, since this would then be equivalent to estimating a
separate coefficient for each of the five predictors, and we have already established
that not enough data are available to do a good job of this.

Instead, one can set up a model for the γj ’s:

γj ∼ N(1, σ2
γ), for j = 1, . . . , 5, (13.16)

so that, in the model (13.15), the common coefficient β can be estimated classically,
but the relative coefficients γj are part of a multilevel model. The hyperparameter
σγ can be interpreted as follows:
• If σγ = 0, the model reduces to the simple averaging (13.14): complete pooling
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of the γj ’s to the common value of 1, so that the combined predictor xw.avg is
simply xavg, the average of the five individual X(j)’s.

• If σγ = ∞, there is no pooling, with the individual coefficients 1
5γjβ estimated

separately using least squares.

• When σγ is positive but finite, the γj ’s are partially pooled, so that the five
predictors xj have coefficients that are near each other but not identical.
Depending on the amount of data available, σγ can be estimated as part of the

model or set to a value such as 0.3 that constrains the γj ’s to be fairly close to 1
and thus constrains the coefficients of the individual xj ’s toward each other in the
data model (13.15).

Connection to factor analysis

A model can include multiplicative parameters for both modeling and computa-
tional purposes. For example, we could predict the election outcome in year t in
state s within region r[s] as

yst = β(0)X(0)
st + α1

5∑

j=1

β(1)
j X(1)

jt + α2γt + α3δr[s],t + ϵst,

where X(0) is the matrix of state × year-level predictors, X(1) is the matrix of year-
level predictors, and γ, δ, and ϵ are national, regional, and statewide error terms.
In this model, the auxiliary parameters α2 and α3 exist for purely computational
reasons, and they can be estimated, with the understanding that we are interested
only in the products α2γt and α3δr,t. More interestingly, α1 serves both a compu-
tational and modeling role—the β(1)

j parameters have a common N( 1
5 , σ2

m) model,
and α1 has the interpretation as the overall coefficient for the economic predictors.

More generally, we can imagine K batches of predictors, with the data-level
regression model using a weighted average from each batch:

y = X(0)β(0) + β1x
w.avg, 1 + · · · + βkxw.avg, K + · · · ,

where each predictor xw.avg
k is a combination of Jk individual predictors xjk:

for each k: xw.avg, k
i =

1
Jk

Jk∑

j=1

γjkxjk
i , for i = 1, . . . , n.

This is equivalent to a regression model on the complete set of available predictors,
x11, . . . , xJ11; x12, . . . , xJ22; . . . , x1K , . . . , xJKK , where the predictor xjk gets the co-
efficient 1

Jk
γjkβk. Each batch of relative weights γ is then modeled hierarchically:

for each k: γjk ∼ N(1, σ2
γ k), for j = 1, . . . , Jk,

with the hyperparameters σγ k estimated from the data or set to low values such
as 0.3.

In this model, each combined predictor xw.avg, k represents a “factor” formed by a
linear combination of the Jk individual predictors, βk represents the importance of
that factor, and the γjk’s give the relative importance of the different components.

As noted at the beginning of this section, these models are currently the subject
of active research, and we suggest that they can serve as a motivation to specially
tailored models for individual problems rather than as off-the-shelf solutions to
generic multilevel problems with many predictors.
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13.7 More complex multilevel models

The models we have considered so far can be generalized in a variety of ways.
Chapters 14 and 15 discuss multilevel logistic and generalized linear models. Other
extensions within multilevel linear and generalized linear models include the fol-
lowing:
• Variances can vary, as parametric functions of input variables, and in a mul-

tilevel way by allowing different variances for groups. For example, the model
yi ∼ N(Xiβ, σ2

i ), with σi = exp(Xiγ), allows the variance to depend on the
predictors in a way that can be estimated from the data, and similarly, in a
multilevel context, a model such as σi = exp(aj[i] + bxi) allows variances to vary
by group. (It is natural to model the parameters σ on the log scale because they
are restricted to be positive.)

• Models with several factors can have many potential interactions, which them-
selves can be modeled in a structured way, for example with larger variances for
coefficients of interactions whose main effects are large. This is a model-based,
multilevel version of general advice for classical regression modeling.

• Regression models can be set up for multivariate outcomes, so that vectors of
coefficients become matrices, with a data-level covariance matrix. These models
become correspondingly more complex when multilevel factors are added.

• Time series can be modeled in many ways going beyond simple autoregressions,
and these parameters can vary by group with time-series cross-sectional data.
This can be seen as a special case of non-nested groupings (for example, country
× year), with calendar time being a group-level predictor.

• One way to go beyond linearity is with nonparametric regression, with the sim-
plest version being yi = g(Xi, θ) + ϵi, and the function g being allowed to have
some general form (for example, cubic splines, which are piecewise-continuous
third-degree polynomials). Versions of such models can also be estimated using
locally weighted regression, and again can be expanded to multilevel structures
as appropriate.

• More complicated models are appropriate to data with spatial or network struc-
ture. These can be thought of as generalizations of multilevel models in which
groups (for example, social networks) are not necessarily disjoint, and in which
group membership can be continuous (some connections are stronger than oth-
ers) rather than simply “in” or “out.”

We do not discuss any of these models further here, but we wanted to bring them
up to be clear that the particular models presented in this book are just the starting
point to our general modeling approach.

13.8 Bibliographic note

The textbooks by Kreft and De Leeuw (1998), Raudenbush and Bryk (2002), and
others discuss multilevel models with varying intercepts and slopes. For an early
example, see Dempster, Rubin, and Tsutakawa (1981). Non-nested models are dis-
cussed by Rasbash and Browne (2003). The flight simulator example comes from
Gawron et al. (2003), and the latin square example comes from Snedecor and
Cochran (1989).

Models for covariance matrices have been presented by Barnard, McCulloch, and
Meng (1996), Pinheiro and Bates (1996), Daniels and Kass (1999, 2001), Daniels
and Pourahmadi (2002). Boscardin and Gelman (1996) discuss parametric models
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for unequal variances in multilevel linear regression. The scaled inverse-Wishart
model we recommend comes from O’Malley and Zaslavsky (2005).

The models for combining regression predictors discussed in Section 13.6 ap-
pear in Witte et al. (1994), Greenland (2000), Gelman (2004b), and Gustafson and
Greenland (2005). See also Hodges et al. (2005) and West (2003) on methods of
including many predictors and interactions in a regression. Other work on select-
ing and combining regression predictors in multilevel models includes Madigan and
Raftery (1994), Hoeting et al. (1999), Chipman, George, and McCulloch (2001), and
Dunson (2006). The election forecasting example is discussed in Gelman and King
(1993) and Gelman et al. (2003, section 15.2); see Fair (1978), Rosenstone (1983),
Campbell (1992), and Wlezien and Erikson (2004, 2005) for influential work in this
area.

Some references for hierarchical spatial and space-time models include Besag,
York, and Mollie (1991), Waller et al. (1997), Besag and Higdon (1999), Wikle et al.
(2001), and Bannerjee, Gelfand, and Carlin (2003). Jackson, Best, and Richardson
(2006) discuss hierarchical models combining aggregate and survey data in public
health. Datta et al. (1999) compare hierarchical time series models; see also Fay and
Herriot (1979). Girosi and King (2005) present a multilevel model for estimating
trends within demographic subgroups.

For information on nonparametric methods such as lowess, splines, wavelets, haz-
ard regression, generalized additive models, and regression trees, see Hastie, Tibshi-
rani, and Friedman (2002), and, for examples in R, see Venables and Ripley (2002).
Crainiceanu, Ruppert, and Wand (2005) fit spline models using Bugs. MacLehose
et al. (2006) combine ideas of nonparametric and multilevel models.

13.9 Exercises

1. Fit a multilevel model to predict course evaluations from beauty and other pre-
dictors in the beauty dataset (see Exercises 3.5, 4.8, and 12.6) allowing the
intercept and coefficient for beauty to vary by course category:

(a) Write the model in statistical notation.
(b) Fit the model using lmer() and discuss the results: the coefficient estimates

and the estimated standard deviation and correlation parameters. Identify
each of the estimated parameters with the notation in your model from (a).

(c) Display the estimated model graphically in plots that also include the data.

2. Models for adjusting individual ratings: a committee of 10 persons is evaluat-
ing 100 job applications. Each person on the committee reads 30 applications
(structured so that each application is read by three people) and gives each a
numerical rating between 1 and 10.

(a) It would be natural to rate the applications based on their combined scores;
however, there is a worry that different raters use different standards, and we
would like to correct for this. Set up a model for the ratings (with parameters
for the applicants and the raters).

(b) It is possible that some persons on the committee show more variation than
others in their ratings. Expand your model to allow for this.

3. Non-nested model: continuing the Olympic ratings example from Exercise 11.3:

(a) Write the notation for a non-nested multilevel model (varying across skaters
and judges) for the technical merit ratings and fit using lmer().
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(b) Fit the model in (a) using the artistic impression ratings.
(c) Display your results for both outcomes graphically.
(d) Use posterior predictive checks to investigate model fit in (a) and (b).

4. Models with unequal variances: the folder age.guessing contains a dataset from
Gelman and Nolan (2002) from a classroom demonstration in which 10 groups
of students guess the ages of 10 different persons based on photographs. The
dataset also includes the true ages of the people in the photographs.
Set up a non-nested model to these data, including a coefficient for each of the
persons in the photos (indicating their apparent age), a coefficient for each of
the 10 groups (indicating potential systematic patterns of groups guessing high
or low), and a separate error variance for each group (so that some groups are
more consistent than others).

5. Return to the CD4 data introduced from Exercise 11.4.

(a) Extend the model in Exercise 12.2 to allow for varying slopes for the time
predictor.

(b) Next fit a model that does not allow for varying slopes but does allow for
different coefficients for each time point (rather than fitting the linear trend).

(c) Compare the results of these models both numerically and graphically.

6. Using the time-series cross-sectional dataset you worked with in Exercise 11.2,
fit the model you formulated in part (c) of that exercise.


